Skip to main content
Log in

Two upper bounds for the Erdős-Hooley Delta-function

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For integer n ⩾ 1 and real u, let Δ(n, u):= ∣{d: dn, eu < d ⩽ eu+1}∣. The Erdős-Hooley Delta-function is then defined by Δ(n):=maxu∈ℝ Δ(n, u). We improve the current upper bounds for the average and normal orders of this arithmetic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erdős P. Problem 218. Solution by the proposer. Canad Math Bull, 1973, 16: 621–622

    Google Scholar 

  2. Erdős P, Nicolas J-L. Répartition des nombres superabondants. Bull Soc Math France, 1975, 103: 65–90

    Article  MathSciNet  MATH  Google Scholar 

  3. Ford K, Green B, Koukoulopoulos D. Equal sums in random sets and the concentration of divisors. Invent Math, 2023, 232: 1027–1160

    Article  MathSciNet  MATH  Google Scholar 

  4. Hall R R, Tenenbaum G. The average orders of Hooley’s Δr-functions, II. Compos Math, 1986, 60: 163–186

    MathSciNet  MATH  Google Scholar 

  5. Hall R R, Tenenbaum G. Divisors. Cambridge Tracts in Mathematics, no. 90. Cambridge: Cambridge University Press, 1988

    Google Scholar 

  6. Hooley C. On a new technique and its applications to the theory of numbers. Proc Lond Math Soc (3), 1979, 38: 115–151

    Article  MathSciNet  MATH  Google Scholar 

  7. Maier H, Tenenbaum G. On the set of divisors of an integer. Invent Math, 1984, 76: 121–128

    Article  MathSciNet  MATH  Google Scholar 

  8. Maier H, Tenenbaum G. On the normal concentration of divisors. J London Math Soc (2), 1985, 31: 393–400

    Article  MathSciNet  MATH  Google Scholar 

  9. Maier H, Tenenbaum G. On the normal concentration of divisors, 2. Math Proc Cambridge Philos Soc, 2009, 147: 593–614

    Article  MathSciNet  MATH  Google Scholar 

  10. Robert O. Sur le nombre des entiers représentables comme somme de trois puissances. Acta Arith, 2011, 149: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  11. Shiu P. A Brun-Titchmarsh theorem for multiplicative functions. J Reine Angew Math, 1980, 313: 161–170

    MathSciNet  MATH  Google Scholar 

  12. Tenenbaum G. Sur la concentration moyenne des diviseurs. Comment Math Helv, 1985, 60: 411–428

    Article  MathSciNet  MATH  Google Scholar 

  13. Tenenbaum G. Fonctions Δ de Hooley et applications. Séminaire de théorie des nombres, Paris 1984–85. Progr Math, 1986, 63: 225–239

    Google Scholar 

  14. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory, 3rd ed. Graduate Studies in Mathematics, vol. 163. Providence: Amer Math Soc, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald Tenenbaum.

Additional information

On the 50th anniversary of Chen’s theorem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Bretèche, R., Tenenbaum, G. Two upper bounds for the Erdős-Hooley Delta-function. Sci. China Math. 66, 2683–2692 (2023). https://doi.org/10.1007/s11425-022-2193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2193-8

Keywords

MSC(2020)

Navigation