Skip to main content
Log in

Discretization and index-robust error analysis for constrained high-index saddle dynamics on the high-dimensional sphere

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We develop and analyze numerical discretization to the constrained high-index saddle dynamics, the dynamics searching for the high-index saddle points confined on the high-dimensional unit sphere. Compared with the saddle dynamics without constraints, the constrained high-index saddle dynamics has more complex dynamical forms, and additional operations such as the retraction and vector transport are required due to the constraint, which significantly complicate the numerical scheme and the corresponding numerical analysis. Furthermore, as the existing numerical analysis results usually depend on the index of the saddle points implicitly, the proved numerical accuracy may be reduced if the index is high in many applications, which indicates the lack of robustness with respect to the index. To address these issues, we derive the error estimates for numerical discretization of the constrained high-index saddle dynamics on the high-dimensional sphere, and then improve it by providing an index-robust error analysis in an averaged norm by adjusting the relaxation parameters. The developed results provide mathematical supports for the accuracy of numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Allgower E, Georg K. Introduction to Numerical Continuation Methods. Philadelphia: SIAM, 2003

    Book  MATH  Google Scholar 

  2. Bao W Z, Cai Y Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet Relat Models, 2013, 6: 1–135

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems. Acta Numer, 2005, 14: 1–137

    Article  MathSciNet  MATH  Google Scholar 

  4. Cancès E, Legoll F, Marinica M-C, et al. Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. J Chem Phys, 2009, 130: 114711

    Article  Google Scholar 

  5. Collins P, Ezra G S, Wiggins S. Index k saddles and dividing surfaces in phase space with applications to isomerization dynamics. J Chem Phys, 2011, 134: 244105

    Article  Google Scholar 

  6. Doye J P K, Wales D J. Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled liquids. J Chem Phys, 2002, 116: 3777–3788

    Article  Google Scholar 

  7. E W N, Vanden-Eijnden E. Transition-path theory and path-finding algorithms for the study of rare events. Annu Rev Phys Chem, 2010, 61: 391–420

    Article  Google Scholar 

  8. E W N, Zhou X. The gentlest ascent dynamics. Nonlinearity, 2011, 24: 1831–1842

    Article  MathSciNet  MATH  Google Scholar 

  9. Farrell P E, Birkisson Á, Funke S W. Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J Sci Comput, 2015, 37: A2026–A2045

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao W G, Leng J, Zhou X. An iterative minimization formulation for saddle point search. SIAM J Numer Anal, 2015, 53: 1786–1805

    Article  MathSciNet  MATH  Google Scholar 

  11. Gould N, Ortner C, Packwood D. A dimer-type saddle search algorithm with preconditioning and linesearch. Math Comp, 2016, 85: 2939–2966

    Article  MathSciNet  MATH  Google Scholar 

  12. Han Y C, Xu Z R, Shi A C, et al. Pathways connecting two opposed bilayers with a fusion pore: A molecularly-informed phase field approach. Soft Matter, 2020, 16: 366–374

    Article  Google Scholar 

  13. Han Y C, Yin J Y, Hu Y C, et al. Solution landscapes of the simplified Ericksen-Leslie model and its comparison with the reduced Landau-de Gennes model. Proc Roy Soc A Math Phys Engrg Sci, 2021, 477: 20210458

    MathSciNet  Google Scholar 

  14. Han Y C, Yin J Y, Zhang P W, et al. Solution landscape of a reduced Landau-de Gennes model on a hexagon. Nonlinearity, 2021, 34: 2048–2069

    Article  MathSciNet  MATH  Google Scholar 

  15. Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  Google Scholar 

  16. Levitt A, Ortner C. Convergence and cycling in walker-type saddle search algorithms. SIAM J Numer Anal, 2017, 55: 2204–2227

    Article  MathSciNet  MATH  Google Scholar 

  17. Li Y X, Zhou J X. A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM J Sci Comput, 2001, 23: 840–865

    Article  MathSciNet  MATH  Google Scholar 

  18. Li Z X, Zhou J X. A local minimax method using virtual geometric objects: Part II—for finding equality constrained saddles. J Sci Comput, 2019, 78: 226–245

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu W, Xie Z Q, Yuan Y J. A constrained gentlest ascent dynamics and its applications to finding excited states of Bose-Einstein condensates. J Comput Phys, 2023, 473: 111719

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo Y, Zheng X C, Cheng X, et al. Convergence analysis of discrete high-index saddle dynamics. SIAM J Numer Anal, 2022, 60: 2731–2750

    Article  MathSciNet  MATH  Google Scholar 

  21. Mehta D. Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. Phys Rev E, 2011, 84: 025702

    Article  Google Scholar 

  22. Milnor J. Morse Theory. Princeton: Princeton University Press, 1963

    Book  MATH  Google Scholar 

  23. Nie Q, Qiao L X, Qiu Y C, et al. Noise control and utility: From regulatory network to spatial patterning. Sci China Math, 2020, 63: 425–440

    Article  MathSciNet  MATH  Google Scholar 

  24. Quapp W, Bofill J M. Locating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamics. Theor Chem Accounts, 2014, 133: 1510

    Article  Google Scholar 

  25. Shi B M, Han Y C, Zhang L. Nematic liquid crystals in a rectangular confinement: Solution landscape, and bifurcation. SIAM J Appl Math, 2022, 82: 1808–1828

    Article  MathSciNet  MATH  Google Scholar 

  26. Smale S. Mathematical problems for the next century. Math Intelligencer, 1998, 20: 7–15

    Article  MathSciNet  MATH  Google Scholar 

  27. Thomson J. XXIV. On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. London, Edinburgh, Dublin Phil Mag J Sci, 1904, 7: 237–265

    Article  MATH  Google Scholar 

  28. Wang W, Zhang L, Zhang P W. Modelling and computation of liquid crystals. Acta Numer, 2021, 30: 765–851

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu Z, Han Y C, Yin J Y, et al. Solution landscapes of the diblock copolymer-homopolymer model under two-dimensional confinement. Phys Rev E, 2021, 104: 014505

    Article  MathSciNet  Google Scholar 

  30. Yin J Y, Huang Z, Zhang L. Constrained high-index saddle dynamics for the solution landscape with equality constraints. J Sci Comput, 2022, 91: 62

    Article  MathSciNet  MATH  Google Scholar 

  31. Yin J Y, Jiang K, Shi A C, et al. Transition pathways connecting crystals and quasicrystals. Proc Natl Acad Sci USA, 2021, 118: e2106230118

    Article  Google Scholar 

  32. Yin J Y, Wang Y W, Chen J Z Y, et al. Construction of a pathway map on a complicated energy landscape. Phys Rev Lett, 2020, 124: 090601

    Article  MathSciNet  Google Scholar 

  33. Yin J Y, Yu B, Zhang L. Searching the solution landscape by generalized high-index saddle dynamics. Sci China Math, 2021, 64: 1801–1816

    Article  MathSciNet  MATH  Google Scholar 

  34. Yin J Y, Zhang L, Zhang P W. High-index optimization-based shrinking dimer method for finding high-index saddle points. SIAM J Sci Comput, 2019, 41: A3576–A3595

    Article  MathSciNet  MATH  Google Scholar 

  35. Yin J Y, Zhang L, Zhang P W. Solution landscape of the Onsager model identifies non-axisymmetric critical points. Phys D, 2022, 430: 133081

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu B, Zheng X C, Zhang P W, et al. Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm. J Comput Phys, 2022, 468: 111513

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang J Y, Du Q. Shrinking dimer dynamics and its applications to saddle point search. SIAM J Numer Anal, 2012, 50: 1899–1921

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang L, Chen L Q, Du Q. Morphology of critical nuclei in solid-state phase transformations. Phys Rev Lett, 2007, 98: 265703

    Article  Google Scholar 

  39. Zhang L, Chen L Q, Du Q. Simultaneous prediction of morphologies of a critical nucleus and an equilibrium precipitate in solids. Commun Comput Phys, 2010, 7: 674–682

    Article  MATH  Google Scholar 

  40. Zhang L, Du Q, Zheng Z Z. Optimization-based shrinking dimer method for finding transition states. SIAM J Sci Comput, 2016, 38: A528–A544

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang L, Ren W Q, Samanta A, et al. Recent developments in computational modelling of nucleation in phase transformations. NPJ Comput Materials, 2016, 2: 16003

    Article  Google Scholar 

  42. Zhang L, Zhang P W, Zheng X C. Error estimates for Euler discretization of high-index saddle dynamics. SIAM J Numer Anal, 2022, 60: 2925–2944

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang L, Zhang P W, Zheng X C. Mathematical and numerical analysis to shrinking-dimer saddle dynamics with local Lipschitz conditions. CSIAM Trans Appl Math, 2023, 4: 157–176

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12225102, 12050002 and 12288101) and the National Key Research and Development Program of China (Grant No. 2021YFF1200500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangcheng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, P. & Zheng, X. Discretization and index-robust error analysis for constrained high-index saddle dynamics on the high-dimensional sphere. Sci. China Math. 66, 2347–2360 (2023). https://doi.org/10.1007/s11425-022-2149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2149-2

Keywords

MSC(2020)

Navigation