Skip to main content
Log in

An infinite-dimensional representation of the Ray-Knight theorems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The classical Ray-Knight theorems for the Brownian motion determine the law of its local time process either at the first hitting time of a given value a by the local time at the origin, or at the first hitting time of a given position b by the Brownian motion. We extend these results by describing the local time process jointly for all a and b, by means of the stochastic integral with respect to an appropriate white noise. Our result applies to μ-processes, and has an immediate application: a μ-process is the height process of a Feller continuous-state branching process (CSBP) with immigration (Lambert (2002)), whereas a Feller CSBP with immigration satisfies a stochastic differential equation (SDE) driven by a white noise (Dawson and Li (2012)); our result gives an explicit relation between these two descriptions and shows that the SDE in question is a reformulation of Tanaka’s formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertoin J, Le Gall J-F. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab Theory Related Fields, 2000, 117: 249–266

    Article  MathSciNet  Google Scholar 

  2. Bertoin J, Le Gall J-F. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J Math, 2006, 50: 147–181

    Article  MathSciNet  Google Scholar 

  3. Carmona P, Petit F, Yor M. Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion. Probab Theory Related Fields, 1994, 100: 1–29

    Article  MathSciNet  Google Scholar 

  4. Carmona P, Petit F, Yor M. Sur les fonctionnelles exponentielles de certains processus de Lévy. Stoch Stoch Rep, 1994, 47: 71–101

    Article  Google Scholar 

  5. Chaumont L, Doney R A. Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion. Probab Theory Related Fields, 1999, 113: 519–534

    Article  MathSciNet  Google Scholar 

  6. Davis B. Brownian motion and random walk perturbed at extrema. Probab Theory Related Fields, 1999, 113: 501–518

    Article  MathSciNet  Google Scholar 

  7. Dawson D A, Li Z H. Stochastic equations, flows and measure-valued processes. Ann Probab, 2012, 40: 813–857

    Article  MathSciNet  Google Scholar 

  8. Jeulin T. Temps local et théorie du grossissement, application de la théorie du grossissement à l’étude des temps locaux browniens. In: Lecture Notes in Mathematics, vol. 1118. Cham: Springer, 1985, 197–304

    Google Scholar 

  9. Knight F B. Random walks and a sojourn density process of Brownian motion. Trans Amer Math Soc, 1963, 109: 56–86

    Article  MathSciNet  Google Scholar 

  10. Lambert A. The genealogy of continuous-state branching processes with immigration. Probab Theory Related Fields, 2002, 122: 42–70

    Article  MathSciNet  Google Scholar 

  11. Lamperti J. Semi-stable Markov processes. I. Z Wahrscheinlichkeitstheorie Verw Geb, 1972, 22: 205–225

    Article  MathSciNet  Google Scholar 

  12. Le Gall J-F, Yor M. Excursions Browniennes et carrés de processus de Bessel. C R Acad Sci Paris Sér I Math, 1986, 303: 73–76

    MathSciNet  Google Scholar 

  13. Norris J R, Rogers L C G, Williams D. Self-avoiding random walk: A Brownian motion model with local time drift. Probab Theory Related Fields, 1987, 74: 271–287

    Article  MathSciNet  Google Scholar 

  14. Perman M. An excursion approach to Ray-Knight theorems for perturbed Brownian motion. Stochastic Process Appl, 1996, 63: 67–74

    Article  MathSciNet  Google Scholar 

  15. Perman M, Werner W. Perturbed Brownian motions. Probab Theory Related Fields, 1997, 108: 357–383

    Article  MathSciNet  Google Scholar 

  16. Ray D. Sojourn times of diffusion processes. Illinois J Math, 1963, 7: 615–630

    Article  MathSciNet  Google Scholar 

  17. Revuz D, Yor M. Continuous Martingales and Brownian Motion, 3rd ed. Berlin: Springer-Verlag, 1999

    Book  Google Scholar 

  18. Shi Z, Werner W. Asymptotics for occupation times of half-lines by stable processes and perturbed reflecting Brownian motion. Stochastics, 1995, 55: 71–85

    MathSciNet  Google Scholar 

  19. Walsh J B. Excursions and local time. Astérisque, 1978, 52: 159–192

    Google Scholar 

  20. Walsh J B. An introduction to stochastic partial differential equations. In: École d’Été de Probabilités de Saint Flour XIV-1984. Lecture Notes in Mathematics, vol. 1180. Berlin-Heidelberg: Springer, 1986, 265–439

    Chapter  Google Scholar 

  21. Werner W. Some remarks on perturbed reflecting Brownian motion. Sém Probab, 1995, 29: 37–43

    MathSciNet  Google Scholar 

  22. Yor M. Some Aspects of Brownian Motion. Part I: Some Special Functionals. Lectures in Mathematics. ETH Zürich. Basel: Birkhäuser, 1992

    Google Scholar 

Download references

Acknowledgements

This work was supported by ANR MALIN. The authors are grateful to the referees for their careful reading and helpful suggestions which led to improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elie Aïdékon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aïdékon, E., Hu, Y. & Shi, Z. An infinite-dimensional representation of the Ray-Knight theorems. Sci. China Math. 67, 149–162 (2024). https://doi.org/10.1007/s11425-022-2068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2068-0

Keywords

MSC(2020)

Navigation