Skip to main content
Log in

Splitting positive sets

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We introduce a class of cardinal invariants \({\mathfrak{s}_{\cal I}}\) for ideals \({\cal I}\) on ω which arise naturally from the FinBW property introduced by Filipów et al. (2007). Let \({\cal I}\) be an ideal on ω. Define

$${\mathfrak{s}_{\cal I}} = \min \{ |X|:X \subset {[\omega ]^\omega },\forall B \in {{\cal I}^ + },\,\exists x \in X(B\backslash x,B \cap x \in {[\omega ]^\omega })\}.$$

We characterize them and compare them with other cardinal invariants of the continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoszynski T, Judah H. Set Theory: On the Structure of the Real Line. Boca Raton: CRC Press, 1995

    Book  MATH  Google Scholar 

  2. Blass A. Combinatorial cardinal characteristics of the continuum. In: Foreman M, Kanamori A, eds. Handbook of Set Theory. Dordrecht: Springer, 2010, 395–489

    Chapter  MATH  Google Scholar 

  3. Blass A, Shelah S. There may be simple \({{\rm{P}}_{{\aleph _1}}}\) and \({{\rm{P}}_{{\aleph _2}}}\)-points and the Rudin-Keisler ordering may be downward directed. Ann Pure Appl Logic, 1987, 33: 213–243

    Article  MathSciNet  MATH  Google Scholar 

  4. Blass A, Shelah S. Ultrafilters with small generating sets. Israel J Math, 1989, 65: 259–271

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle J. Mob families and mad families. Arch Math Logic, 1998, 37: 183–197

    Article  MathSciNet  MATH  Google Scholar 

  6. Brendle J. Mad families and iteration theory. Contemp Math, 2002, 302: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  7. Brendle J. Cardinal invariants of analytic quotients. Presentation at ESI Workshop on Large Cardinals and Descriptive Set Theory, Vienna, http://www.logic.univie.ac.at/2009/esi/pdf/brendle.pdf, 2009

  8. Brendle J. Aspects of iterated forcing. Tutorial at Winter School in Abstract Analysis, Section Set Theory & Topology, https://winterschool.eu/files/11-Aspects_of_iterated_forcing_I.pdf2010

  9. Brendle J, Fischer V. Mad families, splitting families and large continuum. J Symb Log, 2011, 76: 198–208

    Article  MathSciNet  MATH  Google Scholar 

  10. Canjar R M. Mathias forcing which does not add dominating reals. Proc Amer Math Soc, 1988, 104: 1239–1248

    Article  MathSciNet  MATH  Google Scholar 

  11. Chodounskỳ D, Repovš D, Zdomskyy L. Mathias forcing and combinatorial covering properties of filters. J Symb Log, 2015, 80: 1398–1410

    Article  MathSciNet  MATH  Google Scholar 

  12. Farkas B, Zdomskyy L. Ways of destruction. J Symb Log, 2022, 87: 938–966

    Article  MathSciNet  MATH  Google Scholar 

  13. Filipów R. The reaping and splitting numbers of nice ideals. Colloq Math, 2014, 134: 179–192

    Article  MathSciNet  MATH  Google Scholar 

  14. Filipów R, Mrożek N, Recław I, et al. Ideal convergence of bounded sequences. J Symb Log, 2007, 72: 501–512

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldstern M. Tools for your forcing construction. In: Judah H, ed. Set Theory of the Reals. Israel Mathematical Conference Proceedings, vol. 6. Ramat Gan: Bar-Ilan University, 1993, 305–360

    Google Scholar 

  16. Guzmán O, Hrušák M, Martinez-Celis A. Canjar filters II. In: Proceedings of the 2014 RIMS Meeting on Reflection Principles and Set Theory of Large Cardinals, vol. 1895. Kyoto: Res Inst Math Sci, 2014, 59–67

    Google Scholar 

  17. Guzmán O, Hrušák M, Téllez O. Restricted MAD families. J Symb Log, 2020, 85: 149–165

    Article  MathSciNet  MATH  Google Scholar 

  18. Hernández-Hernández F, Hrušák M. Cardinal invariants of analytic P-ideals. Canad J Math, 2007, 59: 575–595

    Article  MathSciNet  MATH  Google Scholar 

  19. Hrušák M. Combinatorics of filters and ideals. Contemp Math, 2011, 533: 29–69

    Article  MathSciNet  MATH  Google Scholar 

  20. Hrušák M. Katětov order on Borel ideals. Arch Math Logic, 2017, 56: 831–847

    Article  MathSciNet  MATH  Google Scholar 

  21. Hrušák M, Meza-Alcántara D, Thümmel E, et al. Ramsey type properties of ideals. Ann Pure Appl Logic, 2017, 168: 2022–2049

    Article  MathSciNet  MATH  Google Scholar 

  22. Hrušák M, Verner J. Adding ultrafilters by definable quotients. Rend Circ Mat Palermo (2), 2011, 60: 445–454

    Article  MathSciNet  MATH  Google Scholar 

  23. Kunen K. Set Theory: An Introduction to Independence Proofs. Amsterdam: North-Holland, 1980

    MATH  Google Scholar 

  24. Malliaris M, Shelah S. Cofinality spectrum theorems in model theory, set theory, and general topology. J Amer Math Soc, 2016, 29: 237–297

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazur K. Fσ-ideals and ω1ω *1 -gaps in the Boolean algebras P(ω)/I. Fund Math, 1991, 138: 103–111

    Article  MathSciNet  Google Scholar 

  26. Meza-Alcántara D. Ideals and filters on countable sets. PhD Thesis. Mexico City: Universidad Nacional Autonoma de Mexico, 2009

    Google Scholar 

  27. Todorcevic S. Topics in Topology. Berlin-Heidelberg: Springer, 2006

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11601443, 11801386 and 11771311). The authors are grateful to the referees for careful reading of the manuscript, corrections, and comments which greatly improved this paper. Theorem 4.1 was proved only for the case where λ = ω1 and κ = ω2 in an early version of this paper. Both referees encourage us to prove the generalized version. One of the referees kindly provide (3) and (4) of Lemma 4.4. He (or She) also provides Remark 4.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., He, J. & Zhang, S. Splitting positive sets. Sci. China Math. 66, 2457–2470 (2023). https://doi.org/10.1007/s11425-022-2066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2066-x

Keywords

MSC(2020)

Navigation