Skip to main content
Log in

On self-affine tiles that are homeomorphic to a ball

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let M be a 3 × 3 integer matrix which is expanding in the sense that each of its eigenvalues is greater than 1 in modulus and let \({\cal D} \subset {\mathbb{Z}^3}\) be a digit set containing |det M| elements. Then the unique nonempty compact set \(T = T(M,{\cal D})\) defined by the set equation \(MT = T + {\cal D}\) is called an integral self-affine tile if its interior is nonempty. If \({\cal D}\) is of the form \({\cal D} = \{ 0,v, \ldots ,(|\det M| - 1)v\} 0\), we say that T has a collinear digit set. The present paper is devoted to the topology of integral self-affine tiles with collinear digit sets. In particular, we prove that a large class of these tiles is homeomorphic to a closed 3-dimensional ball. Moreover, we show that in this case, T carries a natural CW complex structure that is defined in terms of the intersections of T with its neighbors in the lattice tiling {T + z: z ∈ ℤ3} induced by T. This CW complex structure is isomorphic to the CW complex defined by the truncated octahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An L-X, Lau K-S. Characterization of a class of planar self-affine tile digit sets. Trans Amer Math Soc, 2019, 371: 7627–7650

    Article  MathSciNet  Google Scholar 

  2. Bandt C. Self-similar sets. V. Integer matrices and fractal tilings of ℝn. Proc Amer Math Soc, 1991, 112: 549–562

    MathSciNet  Google Scholar 

  3. Bandt C. Combinatorial topology of three-dimensional self-affine tiles. arXiv:1002.0710, 2010

  4. Bandt C, Wang Y. Disk-like self-affine tiles in ℝ2. Discrete Comput Geom, 2001, 26: 591–601

    Article  MathSciNet  Google Scholar 

  5. Bing R H. A characterization of 3-space by partitionings. Trans Amer Math Soc, 1951, 70: 15–27

    Article  MathSciNet  Google Scholar 

  6. Conner G R, Thuswaldner J M. Self-affine manifolds. Adv Math, 2016, 289: 725–783

    Article  MathSciNet  Google Scholar 

  7. Conway J H, Burgiel H, Goodman-Strauss C. The Symmetries of Things. Wellesley: A K Peters, 2008

    Google Scholar 

  8. de Bruijn N G. A combinatorial problem. Indag Math (NS), 1946, 8: 461–467

    Google Scholar 

  9. Deng G T, Liu C T, Ngai S-M. Topological properties of a class of self-affine tiles in ℝ3. Trans Amer Math Soc, 2018, 370: 1321–1350

    Article  MathSciNet  Google Scholar 

  10. Diestel R. Graph Theory, 3rd ed. Graduate Texts in Mathematics, vol. 173. Berlin: Springer-Verlag, 2005

    Google Scholar 

  11. Fuglede B. Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16: 101–121

    Article  MathSciNet  Google Scholar 

  12. Gentle J E. Matrix Algebra, 2nd ed. Theory, Computations and Applications in Statistics. Springer Texts in Statistics. Cham: Springer, 2017

    Book  Google Scholar 

  13. Gröchenig K, Haas A. Self-similar lattice tilings. J Fourier Anal Appl, 1994, 1: 131–170

    Article  MathSciNet  Google Scholar 

  14. Harrold O G. Locally peripherally Euclidean spaces are locally Euclidean. Ann of Math (2), 1961, 74: 207–220

    Article  MathSciNet  Google Scholar 

  15. Harrold O G. A characterization of locally Euclidean spaces. Trans Amer Math Soc, 1965, 118: 1–16

    Article  MathSciNet  Google Scholar 

  16. Hata M. On the structure of self-similar sets. Japan J Appl Math, 1985, 2: 381–414

    Article  MathSciNet  Google Scholar 

  17. Hatcher A. Algebraic Topology. Cambridge: Cambridge University Press, 2002

    Google Scholar 

  18. Hutchinson J E. Fractals and self-similarity. Indiana Univ Math J, 1981, 30: 713–747

    Article  MathSciNet  Google Scholar 

  19. Kamae T, Luo J, Tan B. A gluing lemma for iterated function systems. Fractals, 2015, 23: 1550019

    Article  MathSciNet  Google Scholar 

  20. Kenyon R. Self-replicating tilings. In: Symbolic Dynamics and Its Applications. Contemporary Mathematics, vol. 135. Providence: Amer Math Soc, 1992, 239–263

    Chapter  Google Scholar 

  21. Kirat I, Lau K-S. On the connectedness of self-affine tiles. J Lond Math Soc (2), 2000, 62: 291–304

    Article  MathSciNet  Google Scholar 

  22. Kwun K W. A characterization of the n-sphere. Trans Amer Math Soc, 1961, 101: 377–383

    MathSciNet  Google Scholar 

  23. Lagarias J C, Wang Y. Self-affine tiles in ℝn. Adv Math, 1996, 121: 21–49

    Article  MathSciNet  Google Scholar 

  24. Lagarias J C, Wang Y. Integral self-affine tiles in ℝn. I. Standard and nonstandard digit sets. J Lond Math Soc (2), 1996, 54: 161–179

    Article  MathSciNet  Google Scholar 

  25. Lagarias J C, Wang Y. Integral self-affine tiles in ℝn. Part II. Lattice tilings. J Fourier Anal Appl, 1997, 3: 83–102

    Article  MathSciNet  Google Scholar 

  26. Lai C-K, Lau K-S. Some recent developments of self-affine tiles. In: Recent Developments in Fractals and Related Fields. Trends in Mathematics. Cham: Birkhäuser, 2017, 207–232

    Chapter  Google Scholar 

  27. Lai C-K, Lau K-S, Rao H. Classification of tile digit sets as product-forms. Trans Amer Math Soc, 2017, 369: 623–644

    Article  MathSciNet  Google Scholar 

  28. Leung K-S, Lau K-S. Disklikeness of planar self-affine tiles. Trans Amer Math Soc, 2007, 359: 3337–3355

    Article  MathSciNet  Google Scholar 

  29. Luo J, Akiyama S, Thuswaldner J M. On the boundary connectedness of connected tiles. Math Proc Cambridge Philos Soc, 2004, 137: 397–410

    Article  MathSciNet  Google Scholar 

  30. Luo J, Thuswaldner J M. On the fundamental group of self-affine plane tiles. Ann Inst Fourier (Grenoble), 2006, 56: 2493–2524

    Article  MathSciNet  Google Scholar 

  31. Mauldin R D, Williams S C. Hausdorff dimension in graph directed constructions. Trans Amer Math Soc, 1988, 309: 811–829

    Article  MathSciNet  Google Scholar 

  32. Ngai S-M, Tang T-M. A technique in the topology of connected self-similar tiles. Fractals, 2004, 12: 389–403

    Article  MathSciNet  Google Scholar 

  33. Ngai S-M, Tang T-M. Topology of connected self-similar tiles in the plane with disconnected interiors. Topology Appl, 2005, 150: 139–155

    Article  MathSciNet  Google Scholar 

  34. Scheicher K, Thuswaldner J M. Neighbours of self-affine tiles in lattice tilings. In: Fractals in Graz 2001. Trends in Mathematics. Basel: Birkhäuser, 2003, 241–262

    Chapter  Google Scholar 

  35. Tao T. Fuglede’s conjecture is false in 5 and higher dimensions. Math Res Lett, 2004, 11: 251–258

    Article  MathSciNet  Google Scholar 

  36. Thuswaldner J, Zhang S-Q. On self-affine tiles whose boundary is a sphere. Trans Amer Math Soc, 2020, 373: 491–527

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by a grant funded by the Austrian Science Fund and the Russian Science Foundation (Grant No. I 5554). The second author was supported by National Natural Science Foundation of China (Grant No. 12101566). We thank the referees for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Qin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuswaldner, J.M., Zhang, SQ. On self-affine tiles that are homeomorphic to a ball. Sci. China Math. 67, 45–76 (2024). https://doi.org/10.1007/s11425-022-2065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2065-2

Keywords

MSC(2020)

Navigation