Skip to main content
Log in

Asymptotic stability of explicit infinite energy blowup solutions of the 3D incompressible Navier-Stokes equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamical stability of a family of explicit blowup solutions of the three-dimensional (3D) incompressible Navier-Stokes (NS) equations with smooth initial values, which is constructed in Guo et al. (2008). This family of solutions has finite energy in any bounded domain of ℝ3, but unbounded energy in ℝ3. Based on similarity coordinates, energy estimates and the Nash-Moser-Hörmander iteration scheme, we show that these solutions are asymptotically stable in the backward light-cone of the singularity. Furthermore, the result shows the existence of local energy blowup solutions to the 3D incompressible NS equations with growing data. Finally, the result also shows that in the absence of physical boundaries, the viscous vanishing limit of the solutions does not satisfy the 3D incompressible Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe K. The Navier-Stokes equations in a space of bounded functions. Comm Math Phys, 2015, 338: 849–865

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe K. On estimates for the Stokes flow in a space of bounded functions. J Differential Equations, 2016, 261: 1756–1795

    Article  MathSciNet  MATH  Google Scholar 

  3. Abe K, Giga Y. Analyticity of the Stokes semigroup in spaces of bounded functions. Acta Math, 2013, 211: 1–46

    Article  MathSciNet  MATH  Google Scholar 

  4. Abe K, Giga Y. The L-Stokes semigroup in exterior domains. J Evol Equ, 2014, 14: 1–28

    Article  MathSciNet  MATH  Google Scholar 

  5. Albritton D, Brué E, Colombo M. Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Ann of Math (2), 2022, 196: 415–455

    Article  MathSciNet  MATH  Google Scholar 

  6. Alexandre R, Wang Y G, Xu C J, et al. Well-posedness of the Prandtl equation in Sobolev spaces. J Amer Math Soc, 2015, 28: 745–784

    Article  MathSciNet  MATH  Google Scholar 

  7. Beale J T, Majda A. Rates of convergence for viscous splitting of the Navier-Stokes equations. Math Comp, 1981, 37: 243–259

    Article  MathSciNet  MATH  Google Scholar 

  8. Bjorland C, Brandolese L, Iftimie D, et al. Lp-solutions of the steady-state Navier-Stokes equations with rough external forces. Comm Partial Differential Equations, 2011, 36: 216–246

    Article  MathSciNet  MATH  Google Scholar 

  9. Bjorland C, Schonbek M E. Existence and stability of steady-state solutions with finite energy for the Navier-Stokes equation in the whole space. Nonlinearity, 2009, 22: 1615–1637

    Article  MathSciNet  MATH  Google Scholar 

  10. Bradshaw Z, Kukavica I, Tsai T-P. Existence of global weak solutions to the Navier-Stokes equations in weighted spaces. Indiana Univ Math J, 2022, 71: 191–212

    Article  MathSciNet  MATH  Google Scholar 

  11. Bradshaw Z, Tsai T-P. Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations. Comm Partial Differential Equations, 2020, 45: 1168–1201

    Article  MathSciNet  MATH  Google Scholar 

  12. Bradshaw Z, Tsai T-P. Local energy solutions to the Navier-Stokes equations in Wiener amalgam spaces. SIAM J Math Anal, 2021, 53: 1993–2026

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771–831

    Article  MathSciNet  MATH  Google Scholar 

  14. Cannone M, Karch G, Pilarczyk D, et al. Stability of singular solutions to the Navier-Stokes system. J Differential Equations, 2022, 314: 316–339

    Article  MathSciNet  MATH  Google Scholar 

  15. Decaster A, Iftimie D. On the asymptotic behaviour of solutions of the stationary Navier-Stokes equations in dimension 3. Ann Inst H Poincaré Anal Non Linéaire, 2017, 34: 277–291

    Article  MathSciNet  MATH  Google Scholar 

  16. Donninger R. On stable self-similar blowup for equivariant wave maps. Comm Pure Appl Math, 2011, 64: 1095–1147

    Article  MathSciNet  MATH  Google Scholar 

  17. Donninger R. Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. Duke Math J, 2017, 166: 1627–1683

    Article  MathSciNet  MATH  Google Scholar 

  18. Donninger R, Glogić I. On the existence and stability of blowup for wave maps into a negatively curved target. Anal PDE, 2019, 12: 389–416

    Article  MathSciNet  MATH  Google Scholar 

  19. Donninger R, Rao Z P. Blowup stability at optimal regularity for the critical wave equation. Adv Math, 2020, 370: 107219

    Article  MathSciNet  MATH  Google Scholar 

  20. Donninger R, Schörkhuber B. Stable blowup for wave equations in odd space dimensions. Ann Inst H Poincaré Anal Non Linéaire, 2017, 34: 1181–1213

    Article  MathSciNet  MATH  Google Scholar 

  21. Donninger R, Schörkhuber B. Stable blowup for the supercritical Yang-Mills heat flow. J Differential Geom, 2019, 113: 55–94

    Article  MathSciNet  MATH  Google Scholar 

  22. Ebin D G, Marsden J. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann of Math (2), 1970, 92: 102–163

    Article  MathSciNet  MATH  Google Scholar 

  23. Fefferman C L. Existence and smoothness of the Navier-Stokes equation. In: The Millennium Prize Problems. Cambridge: Clay Math Inst, 2006, 57–67

    Google Scholar 

  24. Fernández-Dalgo P G, Lemarié-Rieusset P G. Weak solutions for Navier-Stokes equations with initial data in weighted L2 spaces. Arch Ration Mech Anal, 2020, 237: 347–382

    Article  MathSciNet  MATH  Google Scholar 

  25. Gallagher I. The tridimensional Navier-Stokes equations with almost bidimensional data: Stability, uniqueness, and life span. Int Math Res Not IMRN, 1997, 1997: 919–935

    Article  MathSciNet  MATH  Google Scholar 

  26. Giga Y, Kohn R V. Asymptotically self-similar blow-up of semilinear heat equations. Comm Pure Appl Math, 1985, 38: 297–319

    Article  MathSciNet  MATH  Google Scholar 

  27. Giga Y, Kohn R V. Characterizing blowup using similarity variables. Indiana Univ Math J, 1987, 36: 1–40

    Article  MathSciNet  MATH  Google Scholar 

  28. Giga Y, Kohn R V. Nondegeneracy of blowup for semilinear heat equations. Comm Pure Appl Math, 1989, 42: 845–884

    Article  MathSciNet  MATH  Google Scholar 

  29. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1998

    MATH  Google Scholar 

  30. Guillod J, Šverák V. Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces. arXiv:1704.00560, 2017

  31. Guo B L, Yang G S, Pu X K. Blow-up and global smooth solutions for incompressible three-dimensional Navier-Stokes equations. Chinese Phys Lett, 2008, 25: 2115–2117

    Article  Google Scholar 

  32. Hopf E. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math Nachr, 1950, 4: 213–231

    Article  MATH  Google Scholar 

  33. Hörmander L V. The boundary problems of physical geodesy. Arch Ration Mech Anal, 1976, 62: 1–52

    Article  MathSciNet  MATH  Google Scholar 

  34. Jia H, Šverák V. Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent Math, 2014, 196: 233–265

    Article  MathSciNet  MATH  Google Scholar 

  35. Jia H, Šverák V. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J Funct Anal, 2015, 268: 3734–3766

    Article  MathSciNet  MATH  Google Scholar 

  36. Karch G, Pilarczyk D. Asymptotic stability of Landau solutions to Navier-Stokes system. Arch Ration Mech Anal, 2011, 202: 115–131

    Article  MathSciNet  MATH  Google Scholar 

  37. Karch G, Pilarczyk D, Schonbek M E. L2-asymptotic stability of singular solutions to the Navier-Stokes system of equations in ℝ3. J Math Pures Appl (9), 2017, 108: 14–40

    Article  MathSciNet  MATH  Google Scholar 

  38. Kato T. Nonstationary flows of viscous and ideal fluids in ℝ3. J Funct Anal, 1972, 9: 296–305

    Article  MathSciNet  MATH  Google Scholar 

  39. Kato T. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations. Mathematical Sciences Research Institute Publications, vol. 2. New York: Springer, 1984, 85–98

    Google Scholar 

  40. Kikuchi N, Seregin G. Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality. In: Nonlinear Equations and Spectral Theory. American Mathematical Society Translations, Series 2,_vol. 220. Providence: Amer Math Soc, 2007, 141–164

    MATH  Google Scholar 

  41. Kozono H, Yamazaki M. The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation. Indiana Univ Math J, 1995, 44: 1307–1336

    Article  MathSciNet  MATH  Google Scholar 

  42. Kwon H, Tsai T-P. Global Navier-Stokes flows for non-decaying initial data with slowly decaying oscillation. Comm Math Phys, 2020, 375: 1665–1715

    Article  MathSciNet  MATH  Google Scholar 

  43. LeFloch P G, Yan W P. Nonlinear stability of blow-up solutions to the hyperbolic mean curvature flow. J Differential Equations, 2020, 269: 8269–8307

    Article  MathSciNet  MATH  Google Scholar 

  44. Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Boca Raton: Chapman & Hall/CRC, 2002

    MATH  Google Scholar 

  45. Leray J. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math, 1934, 63: 193–248

    Article  MathSciNet  MATH  Google Scholar 

  46. Li Y Y, Yan X K. Asymptotic stability of homogeneous solutions of incompressible stationary Navier-Stokes equations. J Differential Equations, 2021, 297: 226–245

    Article  MathSciNet  MATH  Google Scholar 

  47. Lin F H. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm Pure Appl Math, 1998, 51: 241–257

    Article  MathSciNet  MATH  Google Scholar 

  48. Maekawa Y, Miura H, Prange C. Local energy weak solutions for the Navier-Stokes equations in the half-space. Comm Math Phys, 2019, 367: 517–580

    Article  MathSciNet  MATH  Google Scholar 

  49. Majda A J, Bertozzi A L. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2002

    MATH  Google Scholar 

  50. Masmoudi N. Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270: 777–788

    Article  MathSciNet  MATH  Google Scholar 

  51. Merle F, Zaag H. On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Comm Math Phys, 2015, 333: 1529–1562

    Article  MathSciNet  MATH  Google Scholar 

  52. Phan T V, Phuc N C. Stationary Navier-Stokes equations with critically singular external forces: Existence and stability results. Adv Math, 2013, 241: 137–161

    Article  MathSciNet  MATH  Google Scholar 

  53. Prandtl L. Über Flössigkeitsbewegung bei sehr kleiner Reibung. In: Verhandlungen des III. Heidelberg: Internationalen Mathematiker Kongresses, 1904, 484–491

    Google Scholar 

  54. Scheffer V. Turbulence and Hausdorff dimension. In: Turbulence and Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 565. Berlin: Springer, 1976, 174–183

    Chapter  Google Scholar 

  55. Secchi P. On the stationary and nonstationary Navier-Stokes equations in ℝn. Ann Mat Pura Appl (4), 1989, 153: 293–305

    Article  MathSciNet  Google Scholar 

  56. Song W J, Li H, Yang G S, et al. Nonhomogeneous boundary value problem for (I, J) similar solutions of incompressible two-dimensional Euler equations. J Inequal Appl, 2014, 277: 1–15

    MathSciNet  MATH  Google Scholar 

  57. Swann H S G. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ℝ3. Trans Amer Math Soc, 1971, 157: 373–397

    MathSciNet  MATH  Google Scholar 

  58. Tian G, Xin Z P. One-point singular solutions to the Navier-Stokes equations. Topol Methods Nonlinear Anal, 1998, 11: 135–145

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsai T-P. On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch Ration Mech Anal, 1998, 143: 29–51

    Article  MathSciNet  MATH  Google Scholar 

  60. Yan W P. Dynamical behavior near explicit self-similar blow-up solutions for the Born-Infeld equation. Nonlinearity, 2019, 32: 4682–4712

    Article  MathSciNet  MATH  Google Scholar 

  61. Yan W P. Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in ℝ1+3. Calc Var Partial Differential Equations, 2020, 59: 1–40

    Article  MathSciNet  Google Scholar 

  62. Yan W P. Asymptotic stability of explicit blowup solutions for three-dimensional incompressible magnetohydrodynamics equations. J Geom Anal, 2021, 31: 12053–12097

    Article  MathSciNet  MATH  Google Scholar 

  63. Yudovich V I. The Linearization Method in Hydrodynamical Stability Theory. Translations of Mathematical Monographs, vol. 74. Providence: Amer Math Soc, 1989

    Book  MATH  Google Scholar 

  64. Zhang J J, Zhang T. Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electron Res Arch, 2021, 29: 2719–2739

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12231016 and 12071391) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Tan, Z. Asymptotic stability of explicit infinite energy blowup solutions of the 3D incompressible Navier-Stokes equations. Sci. China Math. 66, 2523–2544 (2023). https://doi.org/10.1007/s11425-022-2059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2059-1

Keywords

MSC(2020)

Navigation