Skip to main content
Log in

The non-abelian Hodge correspondence on some non-Kähler manifolds

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The non-abelian Hodge correspondence was established by Corlette (1988), Donaldson (1987), Hitchin (1987) and Simpson (1988, 1992). It states that on a compact Kähler manifold (X,ω), there is a one-to-one correspondence between the moduli space of semi-simple flat complex vector bundles and the moduli space of poly-stable Higgs bundles with vanishing Chern numbers. In this paper, we extend this correspondence to the projectively flat bundles over some non-Kähler manifold cases. Firstly, we prove an existence theorem of Poisson metrics on simple projectively flat bundles over compact Hermitian manifolds. As its application, we obtain a vanishing theorem of characteristic classes of projectively flat bundles. Secondly, on compact Hermitian manifolds which satisfy Gauduchon and astheno-Kähler conditions, we combine the continuity method and the heat flow method to prove that every semi-stable Higgs bundle with \(\Delta \left( {E,{{\bar \partial }_E}} \right) \cdot \left[ {{\omega ^{n - 2}}} \right] = 0\) must be an extension of stable Higgs bundles. Using the above results, over some compact non-Kähler manifolds (M,ω), we establish an equivalence of categories between the category of semi-stable (poly-stable) Higgs bundles \(\left( {E,{{\bar \partial }_E},\phi } \right)\) with \(\Delta \left( {E,{{\bar \partial }_E}} \right) \cdot \left[ {{\omega ^{n - 2}}} \right] = 0\) and the category of (semi-simple) projectively flat bundles (E, D) with \(\sqrt { - 1} {F_D} = \alpha \otimes {\rm{I}}{{\rm{d}}_E}\) for some real (1,1)-form α).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biquard O, Boalch P. Wild non-abelian Hodge theory on curves. Compos Math, 2004, 140: 179–204

    Article  MathSciNet  MATH  Google Scholar 

  2. Bismut J-M, Lott J. Flat vector bundles, direct images and higher real analytic torsion. J Amer Math Soc, 1995, 8: 291–363

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas I, Dumitrescu S. Nonabelian Hodge theory for Fujiki class C manifolds. arXiv:2006.09055v2, 2022

  4. Bott R, Chern S S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math, 1965, 114: 71–112

    Article  MathSciNet  MATH  Google Scholar 

  5. Bradlow S B, García-Prada O, Mundet i Riera I. Relative Hitchin-Kobayashi correspondences for principal pairs. Q J Math, 2003, 54: 171–208

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchdahl N P. Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math Ann, 1988, 280: 625–648

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen X M, Wentworth R A. The nonabelian Hodge correspondence for balanced hermitian metrics of Hodge-Riemann type. arXiv:2106.09133, 2021

  8. Chen Y M, Struwe M. Existence and partial regularity results for the heat flow for harmonic maps. Math Z, 1989, 201: 83–103

    Article  MathSciNet  MATH  Google Scholar 

  9. Collins T C, Jacob A, Yau S-T. Poisson metrics on flat vector bundles over non-compact curves. Comm Anal Geom, 2019, 27: 529–597

    Article  MathSciNet  MATH  Google Scholar 

  10. Corlette K. Flat G-bundles with canonical metrics. J Differential Geom, 1988, 28: 361–382

    Article  MathSciNet  MATH  Google Scholar 

  11. Demailly J-P. Complex analytic and differential geometry. https://www-fourier.ujf-grenoble.fr/∼demailly/manuscripts/agbook.pdf, 2012

  12. Demailly J-P, Peternell T, Schneider M. Compact complex manifolds with numerically effective tangent bundles. J Algebraic Geom, 1994, 3: 295–345

    MathSciNet  MATH  Google Scholar 

  13. Deng Y. Generalized Okounkov bodies, hyperbolicity-related and direct image problems. PhD Thesis. Grenoble: Université Grenoble Alpes, 2017

    Google Scholar 

  14. Donaldson S K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc Lond Math Soc (3), 1985, 50: 1–26

    Article  MathSciNet  MATH  Google Scholar 

  15. Donaldson S K. Twisted harmonic maps and the self-duality equations. Proc Lond Math Soc (3), 1987, 55: 127–131

    Article  MathSciNet  MATH  Google Scholar 

  16. Dupont J L. Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology, 1976, 15: 233–245

    Article  MathSciNet  MATH  Google Scholar 

  17. García-Prada O, Gothen P B, Mundet i Riera I. Higgs bundles and surface group representations in the real symplectic group. J Topol, 2013, 6: 64–118

    Article  MathSciNet  MATH  Google Scholar 

  18. García-Prada O, Mundet i Riera I. Representations of the fundamental group of a closed oriented surface in Sp(4, ℝ). Topology, 2004, 43: 831–855

    Article  MathSciNet  MATH  Google Scholar 

  19. Gauduchon P. La 1-forme de torsion d’une variété hermitienne compacte. Math Ann, 1984, 267: 495–518

    Article  MathSciNet  MATH  Google Scholar 

  20. Hitchin N J. The self-duality equations on a Riemann surface. Proc Lond Math Soc (3), 1987, 55: 59–126

    Article  MathSciNet  MATH  Google Scholar 

  21. Hong M C, Tian G. Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections. Math Ann, 2004, 330: 441–472

    Article  MathSciNet  MATH  Google Scholar 

  22. Jacob A. Stable Higgs bundles and Hermitian-Einstein metrics on non-Kähler manifolds. In: Analysis, Complex Geometry, and Mathematical Physics: In Honor of Duong H. Phong. Providence: Amer Math Soc, 2015, 117–140

    Chapter  Google Scholar 

  23. Jost J, Yau S-T. A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math, 1993, 170: 221–254

    Article  MathSciNet  MATH  Google Scholar 

  24. Jost J, Zuo K. Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties. J Differential Geom, 1997, 47: 469–503

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamber F W, Tondeur P. Characteristic invariants of foliated bundles. Manuscripta Math, 1974, 11: 51–89

    Article  MathSciNet  MATH  Google Scholar 

  26. Korman E O. Characteristic classes of Higgs bundles and Reznikov’s theorem. Manuscripta Math, 2017, 152: 433–442

    Article  MathSciNet  MATH  Google Scholar 

  27. Li J, Yau S-T. Hermitian-Yang-Mills connection on non-Kaähler manifolds. In: Mathematical Aspects of String Theory. Advanced Series in Mathematical Physics, vol. 1. Singapore: World Scientific, 1987, 560–573

    Google Scholar 

  28. Li J, Yau S-T, Zheng F Y. On projectively flat Hermitian manifolds. Comm Anal Geom, 1994, 2: 103–109

    Article  MathSciNet  MATH  Google Scholar 

  29. Li J Y, Zhang X. The gradient flow of Higgs pairs. J Eur Math Soc (JEMS), 2011, 13: 1373–1422

    Article  MathSciNet  MATH  Google Scholar 

  30. Li J Y, Zhang X. The limit of the Yang-Mills-Higgs flow on Higgs bundles. Int Math Res Not IMRN, 2017, 2017: 232–276

    Article  MathSciNet  MATH  Google Scholar 

  31. Lübke M. Einstein metrics and stability for flat connections on compact Hermitian manifolds, and a correspondence with Higgs operators in the surface case. Doc Math, 1999, 4: 487–512

    Article  MathSciNet  MATH  Google Scholar 

  32. Lübke M, Teleman A. The Kobayashi-Hitchin Correspondence. Singapore: World Scientific, 1995

    Book  MATH  Google Scholar 

  33. Lübke M, Teleman A. The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds. Memoirs of the American Mathematical Society, vol. 183. Providence: Amer Math Soc, 2006

    MATH  Google Scholar 

  34. McNamara J, Zhao Y F. Limiting behavior of Donaldson’s heat flow on non-Kähler surfaces. arXiv:1403.8037, 2014

  35. Mochizuki T. Kobayashi-Hitchin Correspondence for Tame Harmonic Bundles and an Application. Astérisque, vol. 309. Paris: Soc Math France, 2006

    MATH  Google Scholar 

  36. Mochizuki T. Kobayashi-Hitchin correspondence for tame harmonic bundles II. Geom Topol, 2009, 13: 359–455

    Article  MathSciNet  MATH  Google Scholar 

  37. Narasimhan M S, Seshadri C S. Stable and unitary vector bundles on a compact Riemann surface. Ann of Math (2), 1965, 82: 540–567

    Article  MathSciNet  MATH  Google Scholar 

  38. Nie Y C, Zhang X. A note on semistable Higgs bundles over compact Kähler manifolds. Ann Global Anal Geom, 2015, 48: 345–355

    Article  MathSciNet  MATH  Google Scholar 

  39. Nie Y C, Zhang X. Semistable Higgs bundles over compact Gauduchon manifolds. J Geom Anal, 2018, 28: 627–642

    Article  MathSciNet  MATH  Google Scholar 

  40. Nie Y C, Zhang X. The limiting behaviour of Hermitian-Yang-Mills flow over compact non-Kähler manifolds. Sci China Math, 2020, 63: 1369–1390

    Article  MathSciNet  MATH  Google Scholar 

  41. Otal A, Ugarte L, Villacampa R. Hermitian metrics on compact complex manifolds and their deformation limits. In: Special Metrics and Group Actions in Geometry. Springer INdAM Series, vol. 23. Cham: Springer, 2017, 269–290

    Chapter  MATH  Google Scholar 

  42. Reznikov A. All regulators of flat bundles are torsion. Ann of Math (2), 1995, 141: 373–386

    Article  MathSciNet  MATH  Google Scholar 

  43. Simpson C T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J Amer Math Soc, 1988, 1: 867–918

    Article  MathSciNet  MATH  Google Scholar 

  44. Simpson C T. Higgs bundles and local systems. Publ Math Inst Hautes Études Sci, 1992, 75: 5–95

    Article  MathSciNet  MATH  Google Scholar 

  45. Uhlenbeck K, Yau S-T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm Pure Appl Math, 1986, 39: S257–S293

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang C J, Zhang P, Zhang X. Higgs bundles over non-compact Gauduchon manifolds. Trans Amer Math Soc, 2021, 374: 3735–3759

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R & D Program of China (Grant No. 2020YFA0713100) and National Natural Science Foundation of China (Grant Nos. 12141104, 11801535, 11721101 and 11625106). The authors thank Professor Jixiang Fu and Professor Xiangwen Zhang to point out the examples satisfying the assumptions in Theorem 1.5. The authors thank the referees for numerous and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Zhang, C. & Zhang, X. The non-abelian Hodge correspondence on some non-Kähler manifolds. Sci. China Math. 66, 2545–2588 (2023). https://doi.org/10.1007/s11425-022-2053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2053-8

Keywords

MSC(2020)

Navigation