Skip to main content
Log in

Local and global well-posedness of entropy-bounded solutions to the compressible Navier-Stokes equations in multi-dimensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Due to the high degeneracy and singularities of the entropy equation, the physical entropy for viscous and heat conductive polytropic gases behaves singularly in the presence of vacuum and it is thus a challenge to study its dynamics. It is shown in this paper that the uniform boundedness of the entropy and the inhomogeneous Sobolev regularities of the velocity and temperature can be propagated for viscous and heat conductive gases in ℝ3, provided that the initial vacuum occurs only at far fields with suitably slow decay of the initial density. Precisely, it is proved that for any strong solution to the Cauchy problem of the heat conductive compressible Navier-Stokes equations, the corresponding entropy keeps uniformly bounded and the L2 regularities of the velocity and temperature can be propagated, up to the existing time of the solution, as long as the initial density vanishes only at far fields with a rate not faster than \(O\left( {{1 \over {{{\left| x \right|}^2}}}} \right)\). The main tools are some singularly weighted energy estimates and an elaborate De Giorgi type iteration technique. We apply the De Giorgi type iterations to different equations in establishing the lower and upper bounds of the entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch D, Jabin P-E. Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann of Math (2), 2018, 188: 577–684

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen G-Q, Hoff D, Trivisa K. Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data. Comm Partial Differential Equations, 2000, 25: 2233–2257

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen Q L, Miao C X, Zhang Z F. Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Comm Pure Appl Math, 2010, 63: 1173–1224

    MathSciNet  MATH  Google Scholar 

  4. Chikami N, Danchin R. On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces. J Differential Equations, 2015, 258: 3435–3467

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho Y G, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl (9), 2004, 83: 243–275

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho Y G, Kim H. Existence results for viscous polytropic fluids with vacuum. J Differential Equations, 2006, 228: 377–411

    Article  MathSciNet  MATH  Google Scholar 

  7. Cho Y G, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120: 91–129

    Article  MathSciNet  MATH  Google Scholar 

  8. Danchin R. Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch Ration Mech Anal, 2001, 160: 1–39

    Article  MathSciNet  MATH  Google Scholar 

  9. Danchin R, Xu J. Optimal decay estimates in the critical Lp framework for flows of compressible viscous and heat-conductive gases. J Math Fluid Mech, 2018, 20: 1641–1665

    Article  MathSciNet  MATH  Google Scholar 

  10. Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math Z, 1992, 209: 115–130

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang D Y, Zhang T, Zi R Z. Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data. SIAM J Math Anal, 2018, 50: 4983–5026

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26. Oxford: Oxford University Press, 2004

    MATH  Google Scholar 

  13. Feireisl E, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358–392

    Article  MathSciNet  MATH  Google Scholar 

  14. Gong H J, Li J K, Liu X G, et al. Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun Math Sci, 2020, 18: 1891–1909

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoff D. Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids. Arch Ration Mech Anal, 1997, 139: 303–354

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoff D, Smoller J. Non-formation of vacuum states for compressible Navier-Stokes equations. Comm Math Phys, 2001, 216: 255–276

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang X D. On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum. Sci China Math, 2021, 64: 1771–1788

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang X D, Li J. Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations. Arch Ration Mech Anal, 2018, 227: 995–1059

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65: 549–585

    Article  MathSciNet  MATH  Google Scholar 

  20. Itaya N. On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math Sem Rep, 1971, 23: 60–120

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang S, Zhang P. Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids. J Math Pures Appl (9), 2003, 82: 949–973

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang S, Zlotnik A. Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data. Proc Roy Soc Edinburgh Sect A, 2004, 134: 939–960

    Article  MathSciNet  MATH  Google Scholar 

  23. Kazhikhov A V. Cauchy problem for viscous gas equations. Sib Math J, 1982, 23: 44–49

    Article  MATH  Google Scholar 

  24. Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 273–282

    Article  MathSciNet  Google Scholar 

  25. Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3. Comm Math Phys, 1999, 200: 621–659

    Article  MathSciNet  MATH  Google Scholar 

  26. Li H L, Wang Y X, Xin Z P. Non-existence of classical solutions with finite energy to the Cauchy problem of the compressible Navier-Stokes equations. Arch Ration Mech Anal, 2019, 232: 557–590

    Article  MathSciNet  MATH  Google Scholar 

  27. Li J K. Global well-posedness of the one-dimensional compressible Navier-Stokes equations with constant heat conductivity and nonnegative density. SIAM J Math Anal, 2019, 51: 3666–3693

    Article  MathSciNet  MATH  Google Scholar 

  28. Li J K. Global small solutions of heat conductive compressible Navier-Stokes equations with vacuum: Smallness on scaling invariant quantity. Arch Ration Mech Anal, 2020, 237: 899–919

    Article  MathSciNet  MATH  Google Scholar 

  29. Li J K. Global well-posedness of non-heat conductive compressible Navier-Stokes equations in 1D. Nonlinearity, 2020, 33: 2181–2210

    Article  MathSciNet  MATH  Google Scholar 

  30. Li J K, Liang Z L. Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier-Stokes system in unbounded domains with large data. Arch Ration Mech Anal, 2016, 220: 1195–1208

    Article  MathSciNet  MATH  Google Scholar 

  31. Li J K, Xin Z P. Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum. Ann PDE, 2019, 5: 7

    Article  MathSciNet  MATH  Google Scholar 

  32. Li J K, Xin Z P. Entropy bounded solutions to the one-dimensional compressible Navier-Stokes equations with zero heat conduction and far field vacuum. Adv Math, 2020, 361: 106923

    Article  MathSciNet  MATH  Google Scholar 

  33. Li J K, Xin Z P. Entropy-bounded solutions to the one-dimensional heat conductive compressible Navier-Stokes equations with far field vacuum. Comm Pure Appl Math, 2022, 75: 2393–2445

    Article  MathSciNet  MATH  Google Scholar 

  34. Li J K, Zheng Y. Local existence and uniqueness of heat conductive compressible Navier-Stokes equations in the presence of vacuum and without initial compatibility conditions. arXiv:2108.10783, 2021

  35. Lions P L. Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques. C R Acad Sci Paris Sér I Math, 1993, 316: 1335–1340

    MathSciNet  MATH  Google Scholar 

  36. Lions P L. Mathematical Topics in Fluid Mechanics, Volume 2. Compressible Models. Oxford: Oxford University Press, 1998

    MATH  Google Scholar 

  37. Łukaszewicz G, Piskorek A. An existence theorem for compressible viscous and heat conducting fluids. Math Methods Appl Sci, 1984, 6: 234–247

    Article  MathSciNet  MATH  Google Scholar 

  38. Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104

    MathSciNet  MATH  Google Scholar 

  39. Matsumura A, Nishida T. Initial-boundary value problems for the equations of motion of general fluids. In: Computing Methods in Applied Sciences and Engineering, vol. 5. Amsterdam: North-Holland, 1982, 389–406

    MATH  Google Scholar 

  40. Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89: 445–464

    Article  MathSciNet  MATH  Google Scholar 

  41. Nash J. Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull Soc Math France, 1962, 90: 487–497

    Article  MathSciNet  MATH  Google Scholar 

  42. Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9: 399–418

    Article  MathSciNet  MATH  Google Scholar 

  43. Salvi R, Straškraba I. Global existence for viscous compressible fluids and their behavior as t →∞. J Fac Sci Univ Tokyo Sect IA Math, 1993, 40: 17–51

    MathSciNet  MATH  Google Scholar 

  44. Serrin J. On the uniqueness of compressible fluid motions. Arch Ration Mech Anal, 1959, 3: 271–288

    Article  MathSciNet  MATH  Google Scholar 

  45. Tani A. On the first initial-boundary value problem of compressible viscous fluid motion. Publ Res Inst Math Sci, 1977, 13: 193–253

    Article  MATH  Google Scholar 

  46. Valli A. An existence theorem for compressible viscous fluids. Ann Mat Pura Appl (4), 1982, 130: 197–213; Correction, Ann Mat Pura Appl (4), 1982, 132: 399–400

    Article  MathSciNet  MATH  Google Scholar 

  47. Valli A, Zajaczkowski W M. Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case. Comm Math Phys, 1986, 103: 259–296

    Article  MathSciNet  MATH  Google Scholar 

  48. Vol’pert A I, Hudjaev S I. On the Cauchy problem for composite systems of nonlinear differential equations. Math USSR Sbornik, 1972, 16: 517–544

    Article  Google Scholar 

  49. Wen H Y, Zhu C J. Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data. SIAM J Math Anal, 2017, 49: 162–221

    Article  MathSciNet  MATH  Google Scholar 

  50. Xin Z P. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51: 229–240

    Article  MathSciNet  MATH  Google Scholar 

  51. Xin Z P, Yan W. On blowup of classical solutions to the compressible Navier-Stokes equations. Comm Math Phys, 2013, 321: 529–541

    Article  MathSciNet  MATH  Google Scholar 

  52. Zlotnik A A, Amosov A A. On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat conducting gas. Sib Math J, 1997, 38: 663–684

    Article  MathSciNet  MATH  Google Scholar 

  53. Zlotnik A A, Amosov A A. Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases. Math Notes, 1998, 63: 736–746

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of National Natural Science Foundation of China (Grant No. 12131010) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515310002). Jinkai Li was supported by National Natural Science Foundation of China (Grant Nos. 11971009 and 11871005) and the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2019A1515011621 and 2020B1515310005). Zhouping Xin was supported by the Zheng Ge Ru Foundation and the Hong Kong RGC Earmarked Research Grants (Grant Nos. CUHK-14305315, CUHK-14300917 and CUHK-14302819)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xin, Z. Local and global well-posedness of entropy-bounded solutions to the compressible Navier-Stokes equations in multi-dimensions. Sci. China Math. 66, 2219–2242 (2023). https://doi.org/10.1007/s11425-022-2047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2047-0

Keywords

MSC(2020)

Navigation