Skip to main content
Log in

High-order accurate solutions of generalized Riemann problems of nonlinear hyperbolic balance laws

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We provide a systematic study for the generalized Riemann problem (GRP) of the nonlinear hyperbolic balance law, which is critically concerned with the construction of the spatial-temporally coupled high-order Godunov-type scheme. The full analytical GRP solvers up to the third-order accuracy and also a collection of properties of the GRP solution are derived by resolving the elementary waves. The resolution of the rarefaction wave is a crucial point, which relies on the use of the generalized characteristic coordinate (GCC) to analyze the solution at the singularity. From the analysis on the GCC, we derive for the general nonlinear system the evolutionary equations for the derivatives of generalized Riemann invariants. For the nonsonic case, the full set of spatial and temporal derivatives of the GRP solution at the singularity are obtained, whereas for the sonic case the limiting directional derivatives inside the rarefaction wave are derived. In addition, the acoustic approximation of the analytical GRP solver is deduced by estimating the error it introduces. It is shown that the computationally more efficient Toro-Titarev solver can be the approximation of the analytical solver under the suitable condition. Hence this work also provides a theoretical basis of the approximate GRP solver. The theoretical results are illustrated via the examples of the Burgers equation, the shallow water equations and a system for compressible flows under gravity acceleration. Numerical results demonstrate the accuracy of the GRP solvers for both weak and strong discontinuity cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Artzi M. The generalized Riemann problem for reactive flows. J Comput Phys, 1989, 81: 70–101

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Artzi M, Falcovitz J. A second-order Godunov-type scheme for compressible fluid dynamics. J Comput Phys, 1984, 55: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Artzi M, Falcovitz J. An upwind second-order scheme for compressible duct flows. SIAM J Sci Stat Comput, 1986, 7: 744–768

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Artzi M, Falcovitz J. Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 11. Cambridge: Cambridge University Press, 2003

    Book  MATH  Google Scholar 

  5. Ben-Artzi M, Li J Q. Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer Math, 2007, 106: 369–425

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Artzi M, Li J Q, Warnecke G. A direct Eulerian GRP scheme for compressible fluid flows. J Comput Phys, 2006, 218: 19–34

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro C E, Toro E F. Solvers for the high-order Riemann problem for hyperbolic balance laws. J Comput Phys, 2008, 227: 2481–2513

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen S X, Han X S, Zhang H. The generalized Riemann problem for first order quasilinear hyperbolic systems of conservation laws II. Acta Appl Math, 2009, 108: 235

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen S X, Huang D C, Han X S. The generalized Riemann problem for first order quasilinear hyperbolic systems of conservation laws I. Bull Korean Math Soc, 2009, 46: 409–434

    Article  MathSciNet  MATH  Google Scholar 

  10. Colella P, Woodward P R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys, 1984, 54: 174–201

    Article  MATH  Google Scholar 

  11. Godunov S K. A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat Sb, 1959, 47: 271–295

    MathSciNet  MATH  Google Scholar 

  12. Goetz C R, Iske A. Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws. Math Comp, 2016, 85: 35–62

    Article  MathSciNet  MATH  Google Scholar 

  13. Han E, Li J Q, Tang H Z. An adaptive GRP scheme for compressible fluid flows. J Comput Phys, 2010, 229: 1448–1466

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeffrey A. Quasilinear Hyperbolic Systems and Waves. London: Pitman, 1976

    MATH  Google Scholar 

  15. Jiang G S, Shu C-W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202–228

    Article  MathSciNet  MATH  Google Scholar 

  16. Kong D X. Global structure stability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: Shocks and contact discontinuities. J Differential Equations, 2003, 188: 242–271

    Article  MathSciNet  MATH  Google Scholar 

  17. Kong D X. Global structure stability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: Rarefaction waves. J Differential Equations, 2005, 219: 421–450

    Article  MathSciNet  MATH  Google Scholar 

  18. Lax P D. Hyperbolic systems of conservation laws II. Comm Pure Appl Math, 1957, 10: 537–566

    Article  MathSciNet  MATH  Google Scholar 

  19. Le Floch P, Raviart P A. An asymptotic expansion for the solution of the generalized Riemann problem. Part I: General theory. Ann Inst H Poincaré Anal Non Linéaire, 1988, 5: 179–207

    Article  MathSciNet  MATH  Google Scholar 

  20. Lei X, Li J Q. A staggered-projecion Godunov-type method for the Baer-Nunziato two-phase model. J Comput Phys, 2021, 437: 110312

    Article  MATH  Google Scholar 

  21. Li J Q, Chen G X. The generalized Riemann problem method for the shallow water equations with bottom topography. Internat J Numer Methods Engrg, 2006, 65: 834–862

    Article  MathSciNet  MATH  Google Scholar 

  22. Li J Q, Du Z F. A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J Sci Comput, 2016, 38: 3046–3069

    Article  MathSciNet  MATH  Google Scholar 

  23. Li J Q, Wang Y. Thermodynamical effects and high resolution methods for compressible fluid flows. J Comput Phys, 2017, 343: 340–354

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200–212

    Article  MathSciNet  MATH  Google Scholar 

  25. Qi J, Wang Y, Li J Q. Remapping-free adaptive GRP method for multi-fluid flows I: One dimensional Euler equations. Commun Comput Phys, 2014, 15: 1029–1044

    Article  MathSciNet  MATH  Google Scholar 

  26. Qian J Z, Li J Q, Wang S H. The generalized Riemann problems for compressible fluid flows: Towards high order. J Comput Phys, 2014, 259: 358–389

    Article  MathSciNet  MATH  Google Scholar 

  27. Sheng W C, Zhang Q L, Zheng Y X. A direct Eulerian GRP scheme for a blood flow model in arteries. SIAM J Sci Comput, 2021, 43: 1975–1996

    Article  MathSciNet  MATH  Google Scholar 

  28. Titarev V A, Toro E F. ADER: Arbitrary high order Godunov approach. J Sci Comput, 2002, 17: 609–618

    Article  MathSciNet  MATH  Google Scholar 

  29. Titarev V A, Toro E F. ADER schemes for three-dimensional non-linear hyperbolic systems. J Comput Phys, 2005, 204: 715–736

    Article  MathSciNet  MATH  Google Scholar 

  30. Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin: Springer, 1997

    Book  MATH  Google Scholar 

  31. Toro E F, Titarev V A. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. J Comput Phys, 2005, 202: 196–215

    Article  MathSciNet  MATH  Google Scholar 

  32. Toro E F, Titarev V A. Derivative Riemann solvers for systems of conservation laws and ADER methods. J Comput Phys, 2006, 212: 150–165

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang Y, Wang S H. Arbitrary high order discontinuous Galerkin schemes based on the GRP method for compressible Euler equations. J Comput Phys, 2015, 298: 113–124

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu K L, Tang H Z. A direct eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics. SIAM J Sci Comput, 2016, 38: 458–489

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang Z C, He P, Tang H Z. A direct Eulerian GRP scheme for relativistic hydrodynamics: One-dimensional case. J Comput Phys, 2011, 230: 7964–7987

    MathSciNet  MATH  Google Scholar 

  36. Yang Z C, Tang H Z. A direct Eulerian GRP scheme for relativistic hydrodynamics: Two-dimensional case. J Comput Phys, 2012, 231: 2116–2139

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuan Y H, Tang H Z. Two-stage fourth-order accurate time discretizations for 1D and 2D special relativistic hydrodynamics. J Comput Math, 2020, 38: 768–796

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11401035, 11671413 and U1530261). The authors thank Professor Jiequan Li for his interesting discussion and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhen Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Wang, S. High-order accurate solutions of generalized Riemann problems of nonlinear hyperbolic balance laws. Sci. China Math. 66, 1609–1648 (2023). https://doi.org/10.1007/s11425-022-2023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2023-0

Keywords

MSC(2020)

Navigation