Skip to main content
Log in

Normalized solutions for a fourth-order Schrödinger equation with a positive second-order dispersion coefficient

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study normalized solutions to a fourth-order Schrödinger equation with a positive second-order dispersion coefficient in the mass supercritical regime. Unlike the well-studied case where the second-order term is zero or negative, the geometrical structure of the corresponding energy functional changes dramatically and this makes the solution set richer. Under suitable control of the second-order dispersion coefficient and mass, we find at least two radial normalized solutions, a ground state and an excited state, together with some asymptotic properties. It is worth pointing out that in the considered repulsive case, the compactness analysis of the related Palais-Smale sequences becomes more challenging. This forces the implementation of refined estimates of the Lagrange multiplier and the energy level to obtain normalized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch T, Soave N. Multiple normalized solutions for a competing system of Schrödinger equations. Calc Var Partial Differential Equations, 2019, 58: 22

    Article  MATH  Google Scholar 

  2. Bellazzini J, Jeanjean L. On dipolar quantum gases in the unstable regime. SIAM J Math Anal, 2016, 48: 2028–2058

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Artzi M, Koch H, Saut J C. Dispersion estimates for fourth order Schrödinger equations. C R Acad Sci Paris Sér I Math, 2000, 330: 87–92

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonheure D, Casteras J-B, dos Santos E M, et al. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation. SIAM J Math Anal, 2018, 50: 5027–5071

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonheure D, Casteras J-B, Gou T X, et al. Strong instability of ground states to a fourth order Schrödinger equation. Int Math Res Not IMRN, 2019, 2019: 5299–5315

    Article  MATH  Google Scholar 

  6. Bonheure D, Casteras J-B, Gou T X, et al. Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. Trans Amer Math Soc, 2019, 372: 2167–2212

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonheure D, Casteras J-B, Mandel R. On a fourth-order nonlinear Helmholtz equation. J Lond Math Soc (2), 2019, 99: 831–852

    Article  MathSciNet  MATH  Google Scholar 

  8. Boulenger T, Lenzmann E. Blowup for biharmonic NLS. Ann Sci Éc Norm Supér (4), 2017, 50: 503–544

    Article  MathSciNet  MATH  Google Scholar 

  9. Boussaïd N, Fernández A J, Jeanjean L. Some remarks on a minimization problem associated to a fourth order nonlinear Schrödinger equation. arXiv:1910.13177, 2019

  10. Buffoni B. Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems. J Differential Equations, 1995, 121: 109–120

    Article  MathSciNet  MATH  Google Scholar 

  11. Buffoni B. Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods. Nonlinear Anal, 1996, 26: 443–462

    Article  MathSciNet  MATH  Google Scholar 

  12. Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Providence: Amer Math Soc, 2003

    Book  MATH  Google Scholar 

  13. Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm Math Phys, 1982, 85: 549–561

    Article  MathSciNet  MATH  Google Scholar 

  14. Evequoz G, Weth T. Dual variational methods and nonvanishing for the nonlinear Helmholtz equation. Adv Math, 2015, 280: 690–728

    Article  MathSciNet  MATH  Google Scholar 

  15. Fibich G, Ilan B, Papanicolaou G. Self-focusing with fourth-order dispersion. SIAM J Appl Math, 2002, 62: 1437–1462

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghoussoub N. Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107. Cambridge: Cambridge University Press, 1993

    Book  MATH  Google Scholar 

  17. Grafakos L. Classical Fourier Analysis, 2nd ed. Graduate Texts in Mathematics, vol. 249. New York: Springer, 2008

    Book  MATH  Google Scholar 

  18. Guo Q. Scattering for the focusing L2-supercritical and 2-subcritical biharmonic NLS equations. Comm Partial Differential Equations, 2016, 41: 185–207

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28: 1633–1659

    Article  MathSciNet  MATH  Google Scholar 

  20. Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations. Phys Rev E, 1996, 53: 1336–1339

    Article  Google Scholar 

  21. Karpman V I, Shagalov A G. Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys D, 2000, 144: 194–210

    Article  MathSciNet  MATH  Google Scholar 

  22. Kenig C E, Ponce G, Vega L. Oscillatory integrals and regularity of dispersive equations. Indiana Univ Math J, 1991, 40: 33–69

    Article  MathSciNet  MATH  Google Scholar 

  23. Laedke E W, Spatschek K H. Stability properties of multidimensional finite-amplitude solitons. Phys Rev A, 1984, 30: 3279–3288

    Article  Google Scholar 

  24. Laedke E W, Spatschek K H, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24: 2764–2769

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo T J, Zheng S J, Zhu S H. Orbital stability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions. arXiv:1904.02540, 2019

  26. Miao C X, Xu G X, Zhao L F. Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case. J Differential Equations, 2009, 246: 3715–3749

    Article  MathSciNet  MATH  Google Scholar 

  27. Pausader B. Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn Partial Differ Equ, 2007, 4: 197–225

    Article  MathSciNet  MATH  Google Scholar 

  28. Pausader B. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete Contin Dyn Syst, 2009, 24: 1275–1292

    Article  MathSciNet  MATH  Google Scholar 

  29. Pausader B. The cubic fourth-order Schrödinger equation. J Funct Anal, 2009, 256: 2473–2517

    Article  MathSciNet  MATH  Google Scholar 

  30. Pausader B, Xia S X. Scattering theory for the fourth-order Schrödinger equation in low dimensions. Nonlinearity, 2013, 26: 2175–2191

    Article  MathSciNet  MATH  Google Scholar 

  31. Soave N. Normalized ground states for the NLS equation with combined nonlinearities. J Differential Equations, 2020, 269: 6941–6987

    Article  MathSciNet  MATH  Google Scholar 

  32. Soave N. Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J Funct Anal, 2020, 279: 108610

    Article  MathSciNet  MATH  Google Scholar 

  33. Sulem C, Sulem P L. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, 1st ed. Applied Mathematical Sciences, vol. 139. New York: Springer, 1999

    MATH  Google Scholar 

  34. Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567–576

    Article  MATH  Google Scholar 

  35. Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Boston: Birkhäuser, 1996

    Book  MATH  Google Scholar 

  36. Zhu S H, Zhang J, Yang H. Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation. Dyn Partial Differ Equ, 2010, 7: 187–205

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11901147) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2020HGTB0030). The authors are very grateful to Professor Louis Jeanjean whose comments on the first version of this work have permitted us to improve our manuscript and to avoid including a wrong proof in excluding vanishing of local minimizing sequences. The authors thank Professor Gongbao Li for helpful discussions on the whole paper and constant encouragement over the past few years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Yang, T. Normalized solutions for a fourth-order Schrödinger equation with a positive second-order dispersion coefficient. Sci. China Math. 66, 1237–1262 (2023). https://doi.org/10.1007/s11425-022-1997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-1997-3

Keywords

MSC(2020)

Navigation