Skip to main content
Log in

One-dimensional monotone nonautonomous dynamical systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This work is devoted to the study of the dynamics of one-dimensional monotone nonautonomous (cocycle) dynamical systems. A description of the structures of their invariant sets, omega limit sets, Bohr/Levitan almost periodic and almost automorphic motions, global attractors, pinched and minimal sets is given. An application of our general results is given to scalar differential and difference equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arnold L. Random Dynamical Systems. Berlin-Heidelberg: Springer-Verlag, 1998

    Book  Google Scholar 

  2. Bronšteĭn I U. Extensions of Minimal Transformation Groups (in Russian). Kishinev: Shtiintsa, 1974

    Google Scholar 

  3. Caraballo T, Cheban D. Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition. I. J Differential Equations, 2009, 246: 108–128

    Article  MathSciNet  Google Scholar 

  4. Chastell P R, Glendinning P A, Stark J. Locating bifurcations in quasiperiodically forced systems. Phys Lett A, 1995, 200: 17–26

    Article  MathSciNet  Google Scholar 

  5. Cheban D N. The comparability of the points of dynamical systems with respect to the nature of their returnability in the limit (in Russian). In: Studies in Algebra, Mathematical Analysis, and Their Applications. Kishinev: Shtiintsa, 1977, 66–71

    Google Scholar 

  6. Cheban D N. Nonautonomous dissipative dynamical systems (in Russian). Dokl Akad Nauk SSSR, 1986, 286: 824–827

    MathSciNet  Google Scholar 

  7. Cheban D N. On the structure of the Levinson center of a dissipative dynamical system (in Russian). Differ Uravn, 1988, 24: 1564–1576

    Google Scholar 

  8. Cheban D N. Global pullback attractors of c-analytic nonautonomous dynamical systems. Stoch Dyn, 2001, 1: 511–535

    Article  MathSciNet  Google Scholar 

  9. Cheban D N. Asymptotically Almost Periodic Solutions of Differential Equations. New York: Hindawi, 2009

    Book  Google Scholar 

  10. Cheban D N. Global Attractors of Set-Valued Dynamical and Control Systems. New York: Nova Sci Publ, 2010

    Google Scholar 

  11. Cheban D N. Global Attractors of Non-Autonomous Dynamical and Control Systems, 2nd ed. Interdisciplinary Mathematical Sciences, vol. 18. River Edge: World Scientific, 2015

    Book  Google Scholar 

  12. Cheban D N. Levitan/Bohr almost periodic and almost automorphic solutions of scalar differential equations. Dyn Syst, 2018, 33: 667–690

    Article  MathSciNet  Google Scholar 

  13. Cheban D N. I. U. Bronshtein’s conjecture for monotone nonautonomous dynamical systems. Discrete Contin Dyn Syst Ser B, 2019, 24: 1095–1113

    MathSciNet  Google Scholar 

  14. Cheban D N. Nonautonomous Dynamics: Nonlinear Oscillations and Global Attractors. Cham: Springer, 2020

    Book  Google Scholar 

  15. Cheban D N. Almost periodic and almost automorphic solutions of monotone differential equations with a strict monotone first integral. Bul Acad Ştiinţe Repub Mold Mat, 2020, 3: 39–74

    MathSciNet  Google Scholar 

  16. Cheban D N. On the structure of the Levinson center for monotone dissipative non-autonomous dynamical systems. In: Advance in Mathematics Research, vol. 29. New York: Nova Sci Publ, 2021, 173–218

    Google Scholar 

  17. Cheban D N. Different types of compact global attractors for cocycles with a noncompact phase space of driving system and the relationship between them. Bul Acad Ştiinţe Repub Mold Mat, 2022, 98: 35–55

    MathSciNet  Google Scholar 

  18. Cheban D N. On the structure of the Levinson center for monotone non-autonomous dynamical systems with a first integral. Carpathian J Math, 2022, 38: 67–94

    Article  MathSciNet  Google Scholar 

  19. Cheban D N. Bohr/Levitan almost periodic and almost automorphic solutions of monotone difference equations with a strict monotone first integral. J Difference Equ Appl, 2022, 28: 510–546

    Article  MathSciNet  Google Scholar 

  20. Cheban D N, Liu Z X. Poisson stable motions of monotone nonautonomous dynamical systems. Sci China Math, 2019, 62: 1391–1418

    Article  MathSciNet  Google Scholar 

  21. Cheban D N, Liu Z X. Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations. J Differential Equations, 2020, 269: 3652–3685

    Article  MathSciNet  Google Scholar 

  22. Cheban D N, Mammana C. Relation between different types of global attractors of set-valued nonautonomous dynamical systems. Set-Valued Anal, 2005, 13: 291–321

    Article  MathSciNet  Google Scholar 

  23. Chueshov I. Order-preserving skew-product flows and nonautonomous parabolic systems. Acta Appl Math, 2001, 65: 185–205

    Article  MathSciNet  Google Scholar 

  24. Chueshov I. Monotone Random Systems—Theory and Applications. Lecture Notes in Mathematics, vol. 1779. Berlin-Heidelberg: Springer, 2002

    Book  Google Scholar 

  25. Demidovich B P. Lectures on Mathematical Theory of Stability (in Russian). Moscow: Nauka, 1967

    Google Scholar 

  26. Ding M Z, Grebogi C, Ott E. Dimensions of strange nonchaotic attractors. Phys Lett A, 1989, 137: 167–172

    Article  MathSciNet  Google Scholar 

  27. Ellis R. Lectures on Topological Dynamics. New York: W. A. Benjamin, 1969

    Google Scholar 

  28. Feudel U, Grebogi C, Ott E. Phase-locking in quasiperiodically forced systems. Phys Rep, 1997, 290: 11–25

    Article  Google Scholar 

  29. Feudel U, Kurths J, Pikovsky A S. Strange non-chaotic attractor in a quasiperiodically forced circle map. Phys D, 1995, 88: 176–186

    Article  MathSciNet  Google Scholar 

  30. Feudel U, Kuznetsov S, Pikovsky A. Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems. World Scientific Series on Nonlinear Science Series A, vol. 56. Singapore: World Scientific, 2006

    Google Scholar 

  31. Flandoli F, Schmalfuß B. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stoch Stoch Rep, 1996, 59: 21–45

    Article  Google Scholar 

  32. Fort M K Jr. Category theorems. Fund Math, 1955, 42: 276–288

    Article  MathSciNet  Google Scholar 

  33. Glendinning P. Global attractors of pinched skew products. Dyn Syst, 2002, 17: 287–294

    Article  MathSciNet  Google Scholar 

  34. Glendinning P, Feudel U, Pikovsky A S, et al. The structure of mode-locked regions in quasi-periodically forced circle maps. Phys D, 2000, 140: 227–243

    Article  MathSciNet  Google Scholar 

  35. Grebogi C, Ott E, Pelikan S, et al. Strange attractors that are not chaotic. Phys D, 1984, 13: 261–268

    Article  MathSciNet  Google Scholar 

  36. Husemoller D. Fibre Bundles, 3rd ed. Graduate Texts in Mathematics, vol. 20. New York: Springer-Verlag, 1994

    Book  Google Scholar 

  37. Jäger T H. Quasiperiodically forced interval maps with negative Schwarzian derivative. Nonlinearity, 2003, 16: 1239–1255

    Article  MathSciNet  Google Scholar 

  38. Keller G. A note on strange nonchaotic attractors. Fund Math, 1996, 151: 139–148

    MathSciNet  Google Scholar 

  39. Kono S. Non-compact and non-trivial minimal sets of a locally compact flow. Tokyo J Math, 1982, 5: 213–223

    Article  MathSciNet  Google Scholar 

  40. Levitan B M, Zhikov V V. Almost Periodic Functions and Differential Equations (in Russian). Moscow: Moscow State University Press, 1978

    Google Scholar 

  41. Lojasiewicz S. An Introduction to the Theory of Real Functions. New York: Wiley, 1988

    Google Scholar 

  42. Novo S, Núñez C, Obaya R. Almost automorphic and almost periodic dynamics for quasimonotone non-autonomous functional differential equations. J Dynam Differential Equations, 2005, 17: 589–619

    Article  MathSciNet  Google Scholar 

  43. Pliss V A. Nonlocal Problems in the Theory of Oscillations (in Russian). Moscow: Nauka, 1964

    Google Scholar 

  44. Rudin U. Functional Analysis. New York: McGraw-Hill, 1973

    Google Scholar 

  45. Sell G R. Topological Dynamics and Ordinary Differential Equations. Van Nostrand Reinhold Mathematical Studies, No. 33. London: Van Nostrand Reinhold, 1971

    Google Scholar 

  46. Shcherbakov B A. Dynamical systems. Review of papers given at the Kishinev seminar on the qualitative theory of differential equations (in Russian). Differ Uravn, 1965, 1: 260–266

    Google Scholar 

  47. Shcherbakov B A. Minimal motions and the structure of minimal sets (in Russian). In: Studies in Algebra and Mathematical Analysis. Kishinev: Kartja Moldovenjaske, 1965, 97–108

    Google Scholar 

  48. Shcherbakov B A. Topological Dynamics and Poisson Stability of Solutions of Differential Equations (in Russian). Kishinev: Shtiintsa, 1972

    Google Scholar 

  49. Shcherbakov B A. The compatible recurrence of the bounded solutions of first order differential equations (in Russian). Differ Uravn, 1974, 10: 270–275

    Google Scholar 

  50. Shcherbakov B A. The comparability of the motions of dynamical systems with regard to the nature of their recurrence (in Russian). Differ Uravn, 1975, 11: 1246–1255

    Google Scholar 

  51. Shcherbakov B A. Poisson Stability of Motions of Dynamical Systems and of Solutions of Differential Equations (in Russian). Kishinev: Shtiintsa, 1985

    Google Scholar 

  52. Shen W X, Yi Y F. Dynamics of almost periodic scalar parabolic equations. J Differential Equations, 1995, 122: 114–136

    Article  MathSciNet  Google Scholar 

  53. Shen W X, Yi Y F. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. Memoirs of the American Mathematical Society, vol. 136. Providence: Amer Math Soc, 1998

    Google Scholar 

  54. Sibirsky K S. Introduction to Topological Dynamics (in Russian). Leyden: Noordhoff International Publishing, 1975

    Google Scholar 

  55. Stark J. Transitive sets for quasi-periodically forced monotone maps. Dyn Syst, 2003, 18: 351–364

    Article  MathSciNet  Google Scholar 

  56. Stark J, Feudel U, Glendinning P A, et al. Rotation numbers for quasi-periodically forced monotone circle maps. Dyn Syst, 2002, 17: 1–28

    Article  MathSciNet  Google Scholar 

  57. Sturman R. Scaling of intermittent behaviour of a strange nonchaotic attractor. Phys Lett A, 1996, 259: 355–365

    Article  MathSciNet  Google Scholar 

  58. Veech W A. Point-distal flows. Amer J Math, 1970, 92: 205–242

    Article  MathSciNet  Google Scholar 

  59. Yoshizawa T. Note on the boundedness and the ultimate boundedness of solutions x′ = F(t,x). Mem Coll Sci Univ Kyoto Ser A Math, 1955, 29: 275–291

    MathSciNet  Google Scholar 

  60. Yoshizawa T. Liapunov’s function and boundedness of solutions. Funkcial Ekvac, 1959, 2: 95–142

    MathSciNet  Google Scholar 

  61. Zhikov V V. The problem of the existence of almost periodic solutions of differential and operator equations (in Russian). Sb Nauchnykh Trudov VVPI Matematika, 1969, 8: 94–188

    Google Scholar 

  62. Zhikov V V. Certain functional methods in the theory of almost periodic solutions. I (in Russian). Differ Uravn, 1971, 7: 215–225

    Google Scholar 

Download references

Acknowledgements

This work was supported by the State Program of the Republic of Moldova “Multivalued Dynamical Systems, Singular Perturbations, Integral Operators and Non-Associative Algebraic Structures (Grant No. 20.80009.5007.25)”. The author thanks the referees for their comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cheban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheban, D. One-dimensional monotone nonautonomous dynamical systems. Sci. China Math. 67, 281–314 (2024). https://doi.org/10.1007/s11425-021-2084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2084-x

Keywords

MSC(2020)

Navigation