Skip to main content
Log in

On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite families of transitive m-ovoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher M. On the maximal subgroups of the finite classical groups. Invent Math, 1984, 76: 469–514

    Article  MathSciNet  Google Scholar 

  2. Bäärnhielm H. Recognising the small Ree groups in their natural representations. J Algebra, 2014, 416: 139–166

    Article  MathSciNet  Google Scholar 

  3. Bamberg J, Kelly S, Law M, et al. Tight sets and m-ovoids of finite polar spaces. J Combin Theory Ser A, 2007, 114: 1293–1314

    Article  MathSciNet  Google Scholar 

  4. Bamberg J, Law M, Penttila T. Tight sets and m-ovoids of generalised quadrangles. Combinatorica, 2009, 29: 1–17

    Article  MathSciNet  Google Scholar 

  5. Bamberg J, Penttila T. Transitive eggs. Innov Incidence Geom, 2006, 4: 1–12

    Article  MathSciNet  Google Scholar 

  6. Bamberg J, Penttila T. Overgroups of cyclic Sylow subgroups of linear groups. Comm Algebra, 2008, 36: 2503–2543

    Article  MathSciNet  Google Scholar 

  7. Bamberg J, Penttila T. A classification of transitive ovoids, spreads, and m-systems of polar spaces. Forum Math, 2009, 21: 181–216

    Article  MathSciNet  Google Scholar 

  8. Bray J N, Holt D F, Roney-Dougal C M. The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. Cambridge: Cambridge University Press, 2013

    Book  Google Scholar 

  9. Brouwer A E, Wilbrink H A. Ovoids and fans in the generalized quadrangle Q(4, 2). Geom Dedicata, 1990, 36: 121–124

    Article  MathSciNet  Google Scholar 

  10. Cannon J, Bosma W, Fieker C, et al. Handbook of Magma Functions. Version 2.19, Sydney, http://magma.maths.usyd.edu.au/magma/handbook/, 2013

  11. Ceria M, Pavese F. The m-ovoids of W(5, 2) and their generalizations. Finite Fields Appl, 2022, 84: 102098

    Article  MathSciNet  Google Scholar 

  12. Conway J H, Curtis R T, Norton S P, et al. ATLAS of Finite Groups. Eynsham: Oxford University Press, 1985

    Google Scholar 

  13. Cooperstein B N. Maximal subgroups of G2(2n). J Algebra, 1981, 70: 23–36

    Article  MathSciNet  Google Scholar 

  14. Cossidente A, Culbert C, Ebert G L, et al. On m-ovoids of W3(q). Finite Fields Appl, 2008, 14: 76–84

    Article  MathSciNet  Google Scholar 

  15. Cossidente A, Pavese F. On intriguing sets of finite symplectic spaces. Des Codes Cryptogr, 2018, 86: 1161–1174

    Article  MathSciNet  Google Scholar 

  16. Coulter R S. Further evaluations of Weil sums. Acta Arith, 1998, 86: 217–226

    Article  MathSciNet  Google Scholar 

  17. Curtis C W, Reiner I. Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II. New York: John Wiley & Sons, 1987

    Google Scholar 

  18. De Bruyn B, Gao M. The homogeneous pseudo-embeddings and hyperovals of the generalized quadrangle H(3, 4). Linear Algebra Appl, 2020, 594: 90–115

    Article  MathSciNet  Google Scholar 

  19. Dye R H. Partitions and their stabilizers for line complexes and quadrics. Ann Mat Pura Appl (4), 1977, 114: 173–194

    Article  MathSciNet  Google Scholar 

  20. Feng T, Li W C. On transitive ovoids of finite hermitian polar spaces. Combinatorica, 2021, 41: 645–667

    Article  MathSciNet  Google Scholar 

  21. Feng T, Li W C, Tao R. PSU3(q)-invariant intriguing sets of orthogonal polar space Q+(7,q) (in Chinese). Sci Sin Math, 2023, 53: 249–260

    Article  Google Scholar 

  22. Feng T, Wang Y, Xiang Q. On m-ovoids of symplectic polar spaces. J Combin Theory Ser A, 2020, 175: 105279

    Article  MathSciNet  Google Scholar 

  23. Gavrilyuk A L, Metsch K, Pavese F. A modular equality for m-ovoids of elliptic equadrics. arXiv:2111.07350, 2021

  24. Gill N. Polar spaces and embeddings of classical groups. New Zealand J Math, 2007, 36: 175–184

    MathSciNet  Google Scholar 

  25. Giudici M, Glasby S P, Praeger C E. Subgroups of classical groups that are transitive on subspaces. arXiv:2012.07213, 2020

  26. Grove L C. Classical Groups and Geometric Algebra. Providence: Amer Math Soc, 2002

    Google Scholar 

  27. Guralnick R, Penttila T, Praeger C E, et al. Linear groups with orders having certain large prime divisors. Proc Lond Math Soc (3), 1999, 78: 167–214

    Article  MathSciNet  Google Scholar 

  28. Hiss G, Malle G. Low-dimensional representations of quasi-simple groups. LMS J Comput Math, 2001, 4: 22–63

    Article  MathSciNet  Google Scholar 

  29. Kantor W M. Ovoids and translation planes. Canad J Math, 1982, 34: 1195–1207

    Article  MathSciNet  Google Scholar 

  30. Kelly S. Constructions of intriguing sets of polar spaces from field reduction and derivation. Des Codes Cryptogr, 2007, 43: 1–8

    Article  MathSciNet  Google Scholar 

  31. Kemper G, Lübeck F, Magaard K. Matrix generators for the Ree groups 2G2(q). Comm Algebra, 2001, 29: 407–413

    Article  MathSciNet  Google Scholar 

  32. King O H. The subgroup structure of finite classical groups in terms of geometric configurations. London Math Soc Lecture Note Ser, 2005, 327: 29–56

    MathSciNet  Google Scholar 

  33. Kleidman P B. The maximal subgroups of the finite 8-dimensional orthogonal groups \(P\Omega _8^ + (q)\) and of their automorphism groups. J Algebra, 1987, 110: 173–242

    Article  MathSciNet  Google Scholar 

  34. Kleidman P B, Liebeck M W. The Subgroup Structure of the Finite Classical Groups. Cambridge: Cambridge University Press, 1990

    Book  Google Scholar 

  35. Liebeck M W. The affine permutation groups of rank three. Proc Lond Math Soc (3), 1987, 54: 477–516

    Article  MathSciNet  Google Scholar 

  36. Lidl R, Niederreiter H. Finite Fields, 2nd ed. Cambridge: Cambridge University Press, 1997

    Google Scholar 

  37. Lindsey J H II. On a six dimensional projective representation of the Hall-Janko group. Pacific J Math, 1970, 35: 175–186

    Article  MathSciNet  Google Scholar 

  38. Lübeck F. Small degree representations of finite Chevalley groups in defining characteristic. LMS J Comput Math, 2001, 4: 135–169

    Article  MathSciNet  Google Scholar 

  39. Lüneburg H. Translation Planes. Berlin-New York: Springer-Verlag, 1980

    Book  Google Scholar 

  40. Ostrom T G, Wagner A. On projective and affine planes with transitive collineation groups. Math Z, 1959, 71: 186–199

    Article  MathSciNet  Google Scholar 

  41. Segre B. On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two. Acta Arith, 1959, 5: 315–332

    Article  MathSciNet  Google Scholar 

  42. Shult E E, Thas J A. m-systems of polar spaces. J Combin Theory Ser A, 1994, 68: 184–204

    Article  MathSciNet  Google Scholar 

  43. Suzuki M. A new type of simple groups of finite order. Proc Natl Acad Sci USA, 1960, 46: 868–870

    Article  MathSciNet  Google Scholar 

  44. Wilson R. The Finite Simple Groups. London: Springer, 2009

    Book  Google Scholar 

  45. Zsigmondy K. Zur theorie der potenzreste. Monatsh Math Phys, 1892, 3: 265–284

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 12171428), the Sino-German Mobility Programme M-0157 and Shandong Provincial Natural Science Foundation (Grant No. ZR2022QA069). The authors are grateful to the reviewers for their detailed comments and suggestions that helped to improve the presentation of the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Li, W. & Tao, R. On m-ovoids of finite classical polar spaces with an irreducible transitive automorphism group. Sci. China Math. 67, 683–712 (2024). https://doi.org/10.1007/s11425-021-2060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2060-3

Keywords

MSC(2020)

Navigation