Skip to main content
Log in

The tensor embedding for a Grothendieck cosmos

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

While the Yoneda embedding and its generalizations have been studied extensively in the literature, the so-called tensor embedding has only received a little attention. In this paper, we study the tensor embedding for closed symmetric monoidal categories and show how it is connected to the notion of geometrically purity, which has recently been investigated in the works of Enochs et al. (2016) and Estrada et al. (2017). More precisely, for a Grothendieck cosmos, i.e., a bicomplete Grothendieck category \({\cal V}\) with a closed symmetric monoidal structure, we prove that the geometrically pure exact category \(({\cal V},{{\cal E}_ \otimes})\) has enough relative injectives; in fact, every object has a geometrically pure injective envelope. We also show that for some regular cardinal λ, the tensor embedding yields an exact equivalence between \(({\cal V},{{\cal E}_ \otimes})\) and the category of λ-cocontinuous \({\cal V}\)-functors from Presλ(\({\cal V}\))to \({\cal V}\), where the former is the full \({\cal V}\)-subcategory of λ-presentable objects in \({\cal V}\). In many cases of interest, λ can be chosen to be \({\aleph _0}\) and the tensor embedding identifies the geometrically pure injective objects in \({\cal V}\) with the (categorically) injective objects in the abelian category of \({\cal V}\)-functors from fp(\({\cal V}\))to \({\cal V}\). As we explain, the developed theory applies, e.g., to the category Ch(R) of chain complexes of modules over a commutative ring R and to the category Qcoh(X) of quasi-coherent sheaves over a (suitably nice) scheme X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adámek J, Rosický J. Locally presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge: Cambridge University Press, 1994

    Book  MATH  Google Scholar 

  2. Adámek J, Rosicky J. On pure quotients and pure subobjects. Czechoslovak Math J, 2004, 54: 623–636

    Article  MathSciNet  MATH  Google Scholar 

  3. Al Hwaeer H, Garkusha G. Grothendieck categories of enriched functors. J Algebra, 2016, 450: 204–241

    Article  MathSciNet  MATH  Google Scholar 

  4. Beke T. Sheafifiable homotopy model categories. Math Proc Cambridge Philos Soc, 2000, 129: 447–475

    Article  MathSciNet  MATH  Google Scholar 

  5. Borceux F. Handbook of Categorical Algebra 2: Categories and Structures. Encyclopedia of Mathematics and Its Applications, vol. 51. Cambridge: Cambridge University Press, 1994

    Book  MATH  Google Scholar 

  6. Borceux F, Sandomingo C Q, Rosický R. A theory of enriched sketches. Theory Appl Categ, 1998, 4: 47–72

    MathSciNet  MATH  Google Scholar 

  7. Bourbaki N. Algebra I. Chapters 1–3. Elements of Mathematics. Berlin-Heidelberg: Springer-Verlag, 1989

    Google Scholar 

  8. Brandenburg M. Tensor categorical foundations of algebraic geometry. arXiv:1410.1716, 2014

  9. Breitsprecher A. Lokal endlich präsentierbare Grothendieck-Kategorien. Mitt Math Sem Giessen, 1970, 85: 1–25

    MathSciNet  MATH  Google Scholar 

  10. Bühler T. Exact categories. Expo Math, 2010, 28: 1–69

    Article  MathSciNet  MATH  Google Scholar 

  11. Christensen L W. Gorenstein Dimensions. Lecture Notes in Mathematics, vol. 1747. Berlin: Springer-Verlag, 2000

    Book  MATH  Google Scholar 

  12. Coupek P, Št̆ovíček J. Cotilting sheaves on Noetherian schemes. Math Z, 2020, 296: 275–312

    Article  MathSciNet  MATH  Google Scholar 

  13. Crawley-Boevey W. Locally finitely presented additive categories. Comm Algebra, 1994, 22: 1641–1674

    Article  MathSciNet  MATH  Google Scholar 

  14. Enochs E E, Estrada S, Odabaşı S. Pure injective and absolutely pure sheaves. Proc Edinb Math Soc (2), 2016, 59: 623–640

    Article  MathSciNet  MATH  Google Scholar 

  15. Enochs E E, García Rozas J R. Tensor products of complexes. Math J Okayama Univ, 1997, 39: 17–39

    MathSciNet  MATH  Google Scholar 

  16. Enochs E E, Jenda O M G. Relative Homological Algebra. De Gruyter Expositions in Mathematics, vol. 30. Berlin: de Gruyter, 2000

    Book  MATH  Google Scholar 

  17. Estrada S, Gillespie J, Odabasi S. Pure exact structures and the pure derived category of a scheme. Math Proc Cambridge Philos Soc, 2017, 163: 251–264

    Article  MathSciNet  MATH  Google Scholar 

  18. Estrada S, Virili S. Cartesian modules over representations of small categories. Adv Math, 2017, 310: 557–609

    Article  MathSciNet  MATH  Google Scholar 

  19. Fox T F. Purity in locally-presentable monoidal categories. J Pure Appl Algebra, 1976, 8: 261–265

    Article  MathSciNet  MATH  Google Scholar 

  20. Freyd P J. Abelian Categories: An Introduction to the Theory of Functors. Harper’s Series in Modern Mathematics. New York: Harper & Row, 1964

    MATH  Google Scholar 

  21. García Rozas J R. Covers and Envelopes in the Category of Complexes of Modules. Boca Raton: Chapman & Hall/CRC, 1999

    MATH  Google Scholar 

  22. Garkusha G A. Classification of finite localizations of quasi-coherent sheaves. Algebra i Analiz, 2009, 21: 93–129

    MathSciNet  Google Scholar 

  23. Grothendieck A. Sur quelques points d’algèbre homologique. Tohoku Math J, 1957, 9: 119–221

    MathSciNet  MATH  Google Scholar 

  24. Grothendieck A, Dieudonné JA. Eléments de Géométrie Algébrique, I. Grundlehren der Mathematischen Wissenschaften, vol. 166. Berlin: Springer-Verlag, 1971

    MATH  Google Scholar 

  25. Hartshorne R. Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. New York-Heidelberg: Springer-Verlag, 1977

    Book  MATH  Google Scholar 

  26. Herzog I. Pure-injective envelopes. J Algebra Appl, 2003, 2: 397–402

    Article  MathSciNet  MATH  Google Scholar 

  27. Hosseini E, Zaghian A. Purity and flatness in symmetric monoidal closed exact categories. J Algebra Appl, 2020, 19: 2050004

    Article  MathSciNet  MATH  Google Scholar 

  28. Hovey M, Palmieri J H, Strickland N P. Axiomatic Stable Homotopy Theory. Memoirs of the American Mathematical Society, vol. 128. Providence: Amer Math Soc, 1997

    Book  MATH  Google Scholar 

  29. Jensen C U, Lenzing H. Model-theoretic Algebra with Particular Emphasis on Fields, Rings, Modules. New York: Gordon and Breach Science Publishers, 1989

    MATH  Google Scholar 

  30. Kashiwara M, Schapira P. Categories and Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 332. Berlin: Springer-Verlag, 2006

    Book  MATH  Google Scholar 

  31. Kelly G M. Basic Concepts of Enriched Category Theory. Cambridge: Cambridge University Press, 2005

    MATH  Google Scholar 

  32. Krause H. The stable derived category of a Noetherian scheme. Compos Math, 2005, 141: 1128–1162

    Article  MathSciNet  MATH  Google Scholar 

  33. Lenzing H. Homological transfer from finitely presented to infinite modules. In: Abelian Group Theory. Lecture Notes in Mathematics, vol. 1006. Berlin: Springer, 1983, 734–761

    Chapter  Google Scholar 

  34. Lewis G L Jr. When projective does not imply flat, and other homological anomalies. Theory Appl Categ, 1999, 5: 202–250

    MathSciNet  MATH  Google Scholar 

  35. Lewis G L Jr, May J P, Mark S. Equivariant Stable Homotopy Theory. Lecture Notes in Mathematics, vol. 1213. Berlin: Springer-Verlag, 1986

    Book  Google Scholar 

  36. MacLane S. Natural associativity and commutativity. Rice Univ Stud, 1963, 49: 28–46

    MathSciNet  MATH  Google Scholar 

  37. MacLane S. Categories for the Working Mathematician, 2nd ed. Graduate Texts in Mathematics, vol. 5. New York: Springer-Verlag, 1998

    MATH  Google Scholar 

  38. Makkai M, Paré R. Accessible Categories: The Foundations of Categorical Model Theory. Contemporary Mathematics, vol. 104. Providence: Amer Math Soc, 1989

    Book  MATH  Google Scholar 

  39. Pareigis B. Non-additive ring and module theory, I. General theory of monoids. Publ Math Debrecen, 1977, 24: 189–204

    Article  MathSciNet  MATH  Google Scholar 

  40. Quillen D. Higher algebraic K-theory, I. In: Algebraic K-Theory, I: Higher K-Theories. Lecture Notes in Mathematics, vol. 341. Cham: Springer, 1973, 85–147

    MATH  Google Scholar 

  41. Slávik A, Št̆ovíček J. On flat generators and Matlis duality for quasicoherent sheaves. Bull Lond Math Soc, 2021, 53: 63–74

    Article  MathSciNet  MATH  Google Scholar 

  42. Stenströ B. Rings of Quotients: An Introduction to Methods of Ring Theory. Grundlehren der Mathematischen Wissenschaften, vol. 217. New York-Heidelberg: Springer-Verlag, 1975

    Book  Google Scholar 

  43. Št̆ovíček J. On purity and applications to coderived and singularity categories. arXiv:1412.1615, 2014

  44. Tarrío L A, López A J, Rodríguez M P, et al. The derived category of quasi-coherent sheaves and axiomatic stable homotopy. Adv Math, 2008, 218: 1224–1252

    Article  MathSciNet  MATH  Google Scholar 

  45. Tarr ío L A, López A J, Rodríguez M P, et al. On the derived category of quasi-coherent sheaves on an Adams geometric stack. J Pure Appl Algebra, 2018, 222: 828–845

    Article  MathSciNet  MATH  Google Scholar 

  46. The Stacks project authors. Stacks project, http://stacks.math.columbia.edu, 2017

  47. Thomason R W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories. In: The Grothendieck Festschrift, vol. 3. Progress in Mathematics, vol. 88. Boston: Birkhäuser, 1990, 247–435

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICYT/FONDECYT/INICIACIÓN (Grant No. 11170394). It is a great pleasure to thank the referees for reading the manuscript so carefully and for their helpful input. In particular, we appreciate the thoughtful feedback we received on Section 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinem Odabaşı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holm, H., Odabaşı, S. The tensor embedding for a Grothendieck cosmos. Sci. China Math. 66, 2471–2494 (2023). https://doi.org/10.1007/s11425-021-2046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2046-9

Keywords

MSC(2020)

Navigation