Skip to main content
Log in

Fourier coefficients of restrictions of eigenfunctions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let {ej} be an orthonormal basis of Laplace eigenfunctions of a compact Riemannian manifold (M, g). Let H ⊂ M be a submanifold and {ψk} be an orthonormal basis of Laplace eigenfunctions of H with the induced metric. We obtain joint asymptotics for the Fourier coefficients

$${\left\langle {{\gamma _H}{e_j},{\psi _k}} \right\rangle _{{L^2}(H)}} = {\int_H {{e_j}\overline \psi } _k}d{V_H}$$

of restrictions γhej of ej to H. In particular, we obtain asymptotics for the sums of the norm-squares of the Fourier coefficients over the joint spectrum \(\left\{ {({\mu _k},{\lambda _j})} \right\}_{j,k - 0}^\infty \) of the (square roots of the) Laplacian ΔM on M and the Laplacian ΔH on H in a family of suitably ‘thick’ regions in ℝ2. Thick regions include (1) the truncated cone μk/λj ∈ [a, b] ⊂ (0, 1) and λjλ, and (2) the slowly thickening strip ∣μkj∣ ≼ w(λ) and λjλ, where w(λ) is monotonic and 1 ≪ w(λ) ≾ λ1/2. Key tools for obtaining the asymptotics include the composition calculus of Fourier integral operators and a new multidimensional Tauberian theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruggeman R W. Fourier coefficients of cusp forms. Invent Math, 1978, 45: 1–18

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruggeman R W. Fourier Coefficients of Automorphic Forms. Lecture Notes in Mathematics, vol. 865. Berlin-Heidelberg: Springer-Verlag, 1981

    MATH  Google Scholar 

  3. Burq N, Gérard P, Tzvetkov N. Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds. Duke Math J, 2007, 138: 445–486

    Article  MathSciNet  MATH  Google Scholar 

  4. Canzani Y, Galkowski J. Improvements for eigenfunction averages: An application of geodesic beams. J Differential Geom, 2023, in press

  5. Canzani Y, Galkowski J. On the growth of eigenfunction averages: Microlocalization and geometry. Duke Math J, 2019, 168: 2991–3055

    Article  MathSciNet  MATH  Google Scholar 

  6. Canzani Y, Galkowski J, Toth J A. Averages of eigenfunctions over hypersurfaces. Comm Math Phys, 2018, 360: 619–637

    Article  MathSciNet  MATH  Google Scholar 

  7. de Verdière Y C. Spectre conjoint d’operateurs pseudo-differentiels qui commutent I. Le cas non integrable. Duke Math J, 1979, 46: 169–182

    MATH  Google Scholar 

  8. Duistermaat J J. Fourier Integral Operators. Boston: Birkhäuser, 1996

    MATH  Google Scholar 

  9. Duistermaat J J, Guillemin V. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent Math, 1975, 29: 39–79

    Article  MathSciNet  MATH  Google Scholar 

  10. Geis M. Concentration of quantum integrable eigenfunctions on a convex surface of revolution. arXiv:2008.12482, 2020

  11. Good A. Local Analysis of Selberg’s Trace Formula. Lecture Notes in Mathematics, vol. 1040. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  12. Guillemin V, Sternberg S. Semi-Classical Analysis. Boston: International Press, 2013

    MATH  Google Scholar 

  13. Hörmander L. Fourier integral operators I. Acta Math, 1971, 127: 79–183

    Article  MathSciNet  MATH  Google Scholar 

  14. Hörmander L. The Analysis of Linear Partial Differential Operators I–IV. New York: Springer-Verlag, 1983, 1985

    Google Scholar 

  15. Hu R. Lp norm estimates of eigenfunctions restricted to submanifolds. Forum Math, 2009, 21: 1021–1052

    Article  MathSciNet  MATH  Google Scholar 

  16. Iwaniec H. Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. Providence: Amer Math Soc, 1997

    MATH  Google Scholar 

  17. Iwaniec H. Spectral Methods of Automorphic Forms, 2nd ed. Graduate Studies in Mathematics, vol. 53. Providence: Amer Math Soc, 2002

    MATH  Google Scholar 

  18. Kuznecov N V. Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture (in Russian). Sums of Kloosterman sums. Mat Sb, 1980, 111: 334–383

    Google Scholar 

  19. Levitin M. Fourier Tauberian theorems. In: The Asymptotic Distribution of Eigenvalues of Partial Differential Operators. Translations of Mathematical Monographs, vol. 155. Providence: Amer Math Soc, 1997, 297–305

    Google Scholar 

  20. Rankin R A. Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions. III. A note on the sum function of the Fourier coefficients of integral modular forms. Math Proc Cambridge Philos Soc, 1940, 36: 150–151

    Article  MathSciNet  MATH  Google Scholar 

  21. Safarov Y. Fourier Tauberian theorems and applications. J Funct Anal, 2001, 185: 111–128

    Article  MathSciNet  MATH  Google Scholar 

  22. Selberg A. On the estimation of Fourier coefficients of modular forms. In: Proceedings of Symposia in Pure Mathematics, vol. 8. Providence: Amer Math Soc, 1965, 1–15

    MATH  Google Scholar 

  23. Sogge C D. Fourier Integrals in Classical Analysis, 2nd ed. Cambridge: Cambridge University Press, 2017

    Book  MATH  Google Scholar 

  24. Sogge C D, Xi Y K, Zhang C. Geodesic period integrals of eigenfunctions on Riemannian surfaces and the Gauss-Bonnet theorem. Camb J Math, 2017, 5: 123–151

    Article  MathSciNet  MATH  Google Scholar 

  25. Wyman E L, Xi Y K. Improved generalized periods estimates over curves on Riemannian surfaces with nonpositive curvature. Forum Math, 2021, 33: 789–807

    Article  MathSciNet  MATH  Google Scholar 

  26. Wyman E L, Xi Y K, Zelditch S. Geodesic bi-angles and Fourier coefficients of restrictions of eigenfunctions. Pure Appl Anal, 2022, 4: 675–725

    Article  MathSciNet  MATH  Google Scholar 

  27. Xi Y K. Improved generalized periods estimates on Riemannian surfaces with nonpositive curvature. arXiv:1711.09864, 2017

  28. Xi Y K. Inner product of eigenfunctions over curves and generalized periods for compact Riemannian surfaces. J Geom Anal, 2019, 29: 2674–2701

    Article  MathSciNet  MATH  Google Scholar 

  29. Zelditch S. Kuznecov sum formulae and Szegő limit formulae on manifolds. Comm Partial Differential Equations, 1992, 17: 221–260

    Article  MathSciNet  MATH  Google Scholar 

  30. Zworski M. Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. Providence: Amer Math Soc, 2012

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Science Foundation of USA (Grant Nos. DMS-1810747 and DMS-1502632). The second author was supported by National Natural Science Foundation of China (Grant No. 12171424). The authors are grateful to Madelyne Brown for pointing out an error in an earlier draft of this paper. The authors are also grateful to the referees for their thorough and invaluable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakun Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyman, E.L., Xi, Y. & Zelditch, S. Fourier coefficients of restrictions of eigenfunctions. Sci. China Math. 66, 1849–1878 (2023). https://doi.org/10.1007/s11425-021-2034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2034-1

Keywords

MSC(2020)

Navigation