Skip to main content
Log in

A q-operational equation and the Rogers-Szegő polynomials

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

By solving a q-operational equation with formal power series, we prove a new q-exponential operational identity. This operational identity reveals an essential feature of the Rogers-Szegő polynomials and enables us to develop a systematic method to prove the identities involving the Rogers-Szegő polynomials. With this operational identity, we can easily derive, among others, the q-Mehler formula, the q-Burchnall formula, the q-Nielsen formula, the q-Doetsch formula, the q-Weisner formula, and the Carlitz formula for the Rogers-Szegő polynomials. This operational identity also provides a new viewpoint on some other basic q-formulas. It allows us to give new proofs of the q-Gauss summation and the second and third transformation formulas of Heine and give an extension of the q-Gauss summation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Salam W A, Carlitz L. Some orthogonal q-polynomials. Math Nachr, 1965, 30: 47–61

    Article  MathSciNet  MATH  Google Scholar 

  2. Arjika S. Certain generating functions for Cigler’s polynomials. Montes Taurus J Pure Appl Math, 2021, 3: 284–296

    Google Scholar 

  3. Aslan H, Ismail M E H. A q-translation approach to Liu’s calculus. Ann Comb, 2019, 23: 465–488

    Article  MathSciNet  MATH  Google Scholar 

  4. Burchnall J L. A note on the polynomials of Hermite. Quart J Math Oxford Ser, 1941, 12: 9–11

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao J, Niu D W. q-Difference equations for Askey-Wilson type integrals via q-polynomials. J Math Anal Appl, 2017, 452: 830–845

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlitz L. Some polynomials related to theta functions. Duke Math J, 1957, 24: 521–527

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlitz L. Generating functions for certain Q-orthogonal polynomials. Collect Math, 1972, 23: 91–104

    MathSciNet  MATH  Google Scholar 

  8. Chen W Y C, Liu Z G. Parameter augmentation for basic hypergeometric series, II. J Combin Theory Ser A, 1997, 80: 175–195

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen W Y C, Liu Z G. Parameter augmentation for basic hypergeometric series, I. In: Mathematical Essays in Honor of Gian-Carlo Rota. Progress in Mathematics, vol. 161. Boston: Birkhäuser, 1998, 111–129

    Chapter  Google Scholar 

  10. Fang J P. q-Differential operator identities and applications. J Math Anal Appl, 2007, 332: 1393–1407

    Article  MathSciNet  MATH  Google Scholar 

  11. Gasper G, Rahman M. Basic Hypergeometric Series. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  12. Hahn W. Über orthogonal polynome, die q-differenzengleichungen genigen. Math Nachr, 1949, 2: 4–34

    Article  MathSciNet  Google Scholar 

  13. Hahn W. Beiträge zur theorie der heineschen reihen, die 24 integrale der hypergeometrischen q-differenzengleichung, das q-analogon der Laplace-transformation. Math Nachr, 1949, 2: 340–379

    Article  MathSciNet  MATH  Google Scholar 

  14. Jackson F H. On q-functions and a certain difference operator. Earth Env Sci T R So, 1909, 46: 253–281

    Google Scholar 

  15. Jia Z Y. Homogeneous q-difference equations and generating functions for the generalized 2d-Hermite polynomials. Taiwanese J Math, 2021, 25: 45–63

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu Z G. Some identities for differential operators and Hermite polynomials. J Math Res Exposition, 1998, 18: 412–416

    MathSciNet  MATH  Google Scholar 

  17. Liu Z G. Some operator identities and q-series transformation formulas. Discrete Math, 2003, 265: 119–139

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu Z G. Two q-difference equations and q-operator identities. J Difference Equ Appl, 2010, 16: 1293–1307

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu Z G. An extension of the non-terminating 6φ5 summation and the Askey-Wilson polynomials. J Difference Equ Appl, 2011, 17: 1401–1411

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Z G. On the q-derivative and q-series expansions. Int J Number Theory, 2013, 9: 2069–2089

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu Z G. A q-series expansion formula and the Askey-Wilson polynomials. Ramanujan J, 2013, 30: 193–210

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu Z G. On the q-partial differential equations and q-series. In: The Legacy of Srinivasa Ramanujan. Ramanujan Mathematical Society Lecture Notes Series, vol. 20. Mysore: Ramanujan Math Soc, 2013, 213–250

    Google Scholar 

  23. Liu Z G. A q-extension of a partial differential equation and the Hahn polynomials. Ramanujan J, 2015, 38: 481–501

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Z G. Extensions of Ramanujan’s reciprocity theorem and the Andrews-Askey integral. J Math Anal Appl, 2016, 443: 1110–1229

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu Z G. On a reduction formula for a kind of double q-integrals. Symmetry, 2016, 8: 44

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu Z G. On a system of partial differential equations and the bivariate Hermite polynomials. J Math Anal Appl, 2017, 454: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu Z G. On a system of q-partial differential equations with applications to q-series. In: Analytic Number Theory, Modular Forms and q-Hypergeometric Series. Springer Proceedings in Mathematics & Statistics, vol. 221. Cham: Springer, 2017, 445–461

    Chapter  Google Scholar 

  28. Liu Z G. Askey-Wilson polynomials and a double q-series transformation formula with twelve parameters. Proc Amer Math Soc, 2019, 147: 2349–2363

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu Z G. On the Askey-Wilson polynomials and a q-beta integral. Proc Amer Math Soc, 2021, 149: 4639–4648

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu Z G, Zeng J. Two expansion formulas involving the Rogers-Szegő polynomials with applications. Int J Number Theory, 2015, 11: 507–525

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu D Q. q-Difference equation and the Cauchy operator identities. J Math Anal Appl, 2009, 359: 265–274

    Article  MathSciNet  MATH  Google Scholar 

  32. Milovanović G V, Rathie A K. Four unified results for reducibility of Srivastava’s triple hypergeometric series HB. Montes Taurus J Pure Appl Math, 2021, 3: 155–164

    Google Scholar 

  33. Niu D W, Cao J. A note on q-partial difference equations and some applications to generating functions and q-integrals. Czechoslovak Math J, 2019, 69: 671–694

    Article  MathSciNet  MATH  Google Scholar 

  34. Niu D W, Li L. q-Laguerre polynomials and related q-partial differential equations. J Difference Equ Appl, 2018, 24: 375–390

    Article  MathSciNet  MATH  Google Scholar 

  35. Rogers L J. On a three-fold symmetry in the elements of Heine’s series. Proc Lond Math Soc (3), 1893, 24: 171–179

    MathSciNet  MATH  Google Scholar 

  36. Roman S. More on the umbral calculus, with emphasis on the q-umbral calculus. J Math Anal Appl, 1985, 107: 222–254

    Article  MathSciNet  MATH  Google Scholar 

  37. Schendel L. Zur theorie der functionen. J Reine Angew Math, 1878, 84: 80–84

    Article  MathSciNet  MATH  Google Scholar 

  38. Srivastava H M, Chaudhary M P, Wakene F K. A family of theta-function identities based upon q-binomial theorem and Heine’s transformations. Montes Taurus J Pure Appl Math, 2020, 2: 1–6

    Google Scholar 

  39. Szegö G. Betrag zur theorie der thetafunktionen. Sitz Preuss Akad Wiss Phys Math, 1926, 19: 242–252

    MATH  Google Scholar 

  40. Tremblay R. New quadratic transformations of hypergeometric functions and associated summation formulas obtained with the well-poised fractional calculus operator. Montes Taurus J Pure Appl Math, 2020, 2: 36–62

    Google Scholar 

  41. Wang M J. A probabilistic version of Mehler’s formula. Taiwanese J Math, 2014, 18: 633–643

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang W J. (q, c)-Derivative operator and its applications. Adv in Appl Math, 2020, 121: 102081

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang Z Z, Wang J. Two operator identities and their applications to terminating basic hypergeometric series and q-integrals. J Math Anal Appl, 2005, 312: 653–665

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11971173) and Science and Technology Commission of Shanghai Municipality (Grant No. 13dz2260400). The author is grateful to the referees for many very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z. A q-operational equation and the Rogers-Szegő polynomials. Sci. China Math. 66, 1199–1216 (2023). https://doi.org/10.1007/s11425-021-1999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1999-2

Keywords

MSC(2020)

Navigation