Skip to main content
Log in

Geodesic metrics on fractals and applications to heat kernel estimates

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

It is well known that for a Brownian motion, if we change the medium to be inhomogeneous by a measure μ, then the new motion (the time-changed process) will diffuse according to a different metric D(·,·). In 2009, Kigami initiated a general scheme to construct such metrics through some self-similar weight functions g on the symbolic space. In order to provide concrete models to Kigami’s theoretical construction, in this paper, we give a thorough study of his metric on two classes of fractals of primary importance: the nested fractals and the generalized Sierpinski carpets; we assume further that the weight functions gga are generated by “symmetric” weights a. Let \(\cal{M}\) be the domain of a such that Dga defines a metric, and let S be the boundary of \(\cal{M}\). One of our main results is that the metrics from ga satisfy the metric chain condition if and only if aS. To determine \(\cal{M}\) and S, we provide a recursive weight transfer construction on the nested fractals, and a basic symmetric argument on the Sierpinski carpet. As an application, we use the metric chain condition to obtain the lower estimate of the sub-Gaussian heat kernel. This together with the upper estimate obtained by Kigami allows us to have a concrete class of metrics for the time change, and the two-sided sub-Gaussian heat kernel estimate on the fundamental fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow M T. Diffusions on fractals. In: Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, vol. 1690. Berlin: Springer, 1998, 1–121

    Chapter  Google Scholar 

  2. Barlow M T, Bass R F. The construction of Brownian motion on the Sierpinski carpet. Ann Inst Henri Poincaré, 1989, 25: 225–257

    MathSciNet  MATH  Google Scholar 

  3. Barlow M T, Bass R F. On the resistance of the Sierpinski carpet. Proc Roy Soc A, 1990, 431: 354–360

    MathSciNet  MATH  Google Scholar 

  4. Barlow M T, Bass R F. Transition densities for Brownian motion on the Sierpinski carpet. Probab Theory Related Fields, 1992, 91: 307–330

    Article  MathSciNet  MATH  Google Scholar 

  5. Barlow M T, Bass R F. Brownian motion and Harmonic analysis on the Sierpinski carpet. Canad J Math, 1999, 51: 673–744

    Article  MathSciNet  MATH  Google Scholar 

  6. Barlow M T, Kumagai T. Transition density asymptotics for some diffusion processes with multi-fractal structures. Electron J Probab, 2001, 6: 1–23

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow M T, Murugan M. Stability of the elliptic Harnack inequality. Ann of Math (2), 2018, 187: 777–823

    Article  MathSciNet  MATH  Google Scholar 

  8. Barlow M T, Perkins E A. Brownian motion on the Sierpiński gasket. Probab Theory Related Fields, 1988, 79: 543–623

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonk M, Merenkov S. Quasisymmetric rigidity of square Sierpiński carpets. Ann of Math (2), 2013, 177: 591–643

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. De Gruyter Studies in Mathematics, vol. 19. Berlin: Walter de Gruyter, 1994

    Google Scholar 

  11. Grigor’yan A, Hu J X, Lau K-S. Heat kernels on metric measure spaces and an application to semilinear elliptic equations. Trans Amer Math Soc, 2003, 355: 2065–2095

    Article  MathSciNet  MATH  Google Scholar 

  12. Grigor’yan A, Hu J X, Lau K-S. Heat kernels on metric measure spaces with doubling measure. In: Fractal Geometry and Stochastics IV. Boston: Birkhäuser, 2009, 3–37

    Chapter  Google Scholar 

  13. Grigor’yan A, Hu J X, Lau K-S. Heat kernels on metric measure spaces. In: Geometry and Analysis on Fractals. New York: Springer, 2014, 147–207

    Chapter  MATH  Google Scholar 

  14. Grigor’yan A, Hu J X, Lau K-S. Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces. J Math Soc Japan, 2015, 67: 1485–1549

    MathSciNet  MATH  Google Scholar 

  15. Grigor’yan A, Telcs A. Two-sided estimates of heat kernels on metric measure spaces. Ann Probab, 2012, 40: 1212–1284

    Article  MathSciNet  MATH  Google Scholar 

  16. Heinonen J. Lectures on Analysis on Metric Spaces. New York: Springer-Verlag, 2001

    Book  MATH  Google Scholar 

  17. Heinonen J, Koskela P, Shanmugalingam N, et al. Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. Cambridge: Cambridge University Press, 2015

    Book  MATH  Google Scholar 

  18. Kaimanovich V. Random walks on Sierpiński graphs: Hyperbolicity and stochastic homogenization. In: Trends in Mathematics. Basel: Birkhäuser, 2003, 145–183

    Google Scholar 

  19. Kigami J. Analysis on Fractals. Cambridge: Cambridge University Press, 2001

    Book  MATH  Google Scholar 

  20. Kigami J. Local Nash inequality and inhomogeneity of heat kernels. Proc Lond Math Soc (3), 2004, 89: 525–544

    Article  MathSciNet  MATH  Google Scholar 

  21. Kigami J. Volume Doubling Measures and Heat Kernel Estimates on Self-Similar Sets. Memoirs of the American Mathematical Society, vol. 199. Providence: Amer Math Soc, 2009

    Google Scholar 

  22. Kigami J. Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates. Memoirs of the American Mathematical Society, vol. 216. Providence: Amer Math Soc, 2012

    Google Scholar 

  23. Kigami J. Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance. Memoirs of the American Mathematical Society, vol. 259. Providence: Amer Math Soc, 2019

    Google Scholar 

  24. Kigami J. Geometry and Analysis of Metric Spaces via Weighted Partitions. Lecture Notes in Mathematics, vol. 2265. Cham: Springer, 2020

    Google Scholar 

  25. Kong S-L, Lau K-S, Wong T-K. Random walks and induced Dirichlet forms on self-similar sets. Adv Math, 2017, 320: 1099–1134

    Article  MathSciNet  MATH  Google Scholar 

  26. Kumagai T. Estimates of transition densities for Brownian motion on nested fractals. Probab Theory Related Fields, 1993, 96: 205–224

    Article  MathSciNet  MATH  Google Scholar 

  27. Lau K-S, Wang X-Y. Self-similar sets as hyperbolic boundaries. Indiana Univ Math J, 2009, 58: 1777–1795

    Article  MathSciNet  MATH  Google Scholar 

  28. Lau K-S, Wang X-Y. On hyperbolic graphs induced by iterated function systems. Adv Math, 2017, 313: 357–378

    Article  MathSciNet  MATH  Google Scholar 

  29. Lindstrøm T. Brownian Motion on Nested Fractals. Memoirs of the American Mathematical Society, vol. 83. Providence: Amer Math Soc, 1990

    Google Scholar 

  30. Murugan M. On the length of chains in a metric space. J Funct Anal, 2020, 279: 6

    Article  MathSciNet  MATH  Google Scholar 

  31. Sabot C. Existence and uniqueness of diffusions on finitely ramified self-similar fractals. Ann Sci Éc Norm Supér (4), 1997, 30: 605–673

    Article  MathSciNet  MATH  Google Scholar 

  32. Sturm K T. On the geometry of metric measure spaces I. Acta Math, 2006, 196: 65–131

    Article  MathSciNet  MATH  Google Scholar 

  33. Telcs A. The Einstein relation for random walks on graphs. J Stat Phys, 2006, 122: 617–645

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Qingsong Gu was supported by National Natural Science Foundation of China (Grant Nos. 12101303 and 12171354). Ka-Sing Lau was supported by the Hong Kong Research Grant Council. Hua Qiu was supported by National Natural Science Foundation of China (Grant No. 12071213) and the Natural Science Foundation of Jiangsu Province in China (Grant No. BK20211142). Huo-Jun Ruan was supported by National Natural Science Foundation of China (Grant No. 11771391), Zhejiang Provincial National Science Foundation of China (Grant No. LY22A010023) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2021FZZX001-01). The authors are indebted to Professor Jun Kigami for his helpful suggestions and comments, especially in bringing their attention to several references on the 1-adaptedness and quasisymmetry of the metrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Q., Lau, KS., Qiu, H. et al. Geodesic metrics on fractals and applications to heat kernel estimates. Sci. China Math. 66, 907–934 (2023). https://doi.org/10.1007/s11425-021-1989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1989-3

Keywords

MSC(2020)

Navigation