Skip to main content
Log in

Regularization by transport noises for 3D MHD equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of regularization by noises for the three-dimensional magnetohydrodynamical (3D MHD) equations. It is shown that in a suitable scaling limit, the multiplicative noise of transport type gives rise to bounds on the vorticity fields of the fluid velocity and magnetic fields. As a result, if the noise intensity is big enough, then the stochastic 3D MHD equations admit a pathwise unique global solution for large initial data with high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H, Zhang P. On the global solution of a 3-D MHD system with initial data near equilibrium. Comm Pure Appl Math, 2017, 70: 1509–1561

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold L. Stabilization by noise revisited. ZAMM Z Angew Math Mech, 1990, 70: 235–246

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold L, Crauel H, Wihstutz V. Stabilization of linear systems by noise. SIAM J Control Optim, 1983, 21: 451–461

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu V, Da Prato G. Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations. Appl Math Optim, 2007, 56: 145–168

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedrossian J, Zelati M C. Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch Ration Mech Anal, 2017, 224: 1161–1204

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchi L A, Flandoli F. Stochastic Navier-Stokes equations and related models. Milan J Math, 2020, 88: 225–246

    Article  MathSciNet  MATH  Google Scholar 

  7. Billingsley P. Convergence of Probability Measures, 2nd ed. New York: John Wiley & Sons, 1999

    Book  MATH  Google Scholar 

  8. Brzeźniak Z, Capiński M, Flandoli F. Stochastic Navier-Stokes equations with multiplicative noise. Stoch Anal Appl, 1992, 10: 523–532

    Article  MathSciNet  MATH  Google Scholar 

  9. Butkovski O, Mytnik L. Regularization by noise and flows of solutions for a stochastic heat equation. Ann Probab, 2019, 47: 165–212

    MathSciNet  MATH  Google Scholar 

  10. Constantin P, Kiselev A, Ryzhik L, et al. Diffusion and mixing in fluid flow. Ann of Math (2), 2008, 168: 643–674

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Prato G, Debussche A. Ergodicity for the 3D stochastic Navier-Stokes equations. J Math Pures Appl (9), 2003, 82: 877–947

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato G, Flandoli F. Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J Funct Anal, 2010, 259: 243–267

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Prato G, Flandoli F, Priola E, et al. Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann Probab, 2013, 41: 3306–3344

    Article  MathSciNet  MATH  Google Scholar 

  14. Da Prato G, Flandoli F, Röckner M, et al. Strong uniqueness for SDEs in Hilbert spaces with nonregular drift. Ann Probab, 2016, 44: 1985–2023

    Article  MathSciNet  MATH  Google Scholar 

  15. Delarue F, Flandoli F, Vincenzi D. Noise prevents collapse of Vlasov-Poisson point charges. Comm Pure Appl Math, 2014, 67: 1700–1736

    Article  MathSciNet  MATH  Google Scholar 

  16. Duvaut G, Lions J L. Inéquations en thermoélasticité et magnéto-hydrodynamique. Arch Ration Mech Anal, 1972, 46: 241–279

    Article  MATH  Google Scholar 

  17. Fedrizzi E, Flandoli F. Pathwise uniqueness and continuous dependence for SDEs with non-regular drift. Stochastics, 2011, 83: 241–257

    Article  MathSciNet  MATH  Google Scholar 

  18. Fedrizzi E, Flandoli F. Noise prevents singularities in linear transport equations. J Funct Anal, 2013, 264: 1329–1354

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng Y Y, Iyer G. Dissipation enhancement by mixing. Nonlinearity, 2019, 32: 1810–1851

    Article  MathSciNet  MATH  Google Scholar 

  20. Flandoli F, Galeati L, Luo D J. Delayed blow-up by transport noise. Comm Partial Differential Equations, 2021, 46: 1757–1788

    Article  MathSciNet  MATH  Google Scholar 

  21. Flandoli F, Galeati L, Luo D J. Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations. J Evol Equ, 2021, 21: 567–600

    Article  MathSciNet  MATH  Google Scholar 

  22. Flandoli F, Gatarek D. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab Theory Related Fields, 1995, 102: 367–391

    Article  MathSciNet  MATH  Google Scholar 

  23. Flandoli F, Gubinelli M, Priola E. Well posedness of the transport equation by stochastic perturbation. Invent Math, 2010, 180: 1–53

    Article  MathSciNet  MATH  Google Scholar 

  24. Flandoli F, Gubinelli M, Priola E. Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations. Stochastic Process Appl, 2011, 121: 1445–1463

    Article  MathSciNet  MATH  Google Scholar 

  25. Flandoli F, Hofmanova M, Luo D J, et al. Global well-posedness of the 3D Navier-Stokes equations perturbed by a deterministic vector field. Ann Appl Probab, 2022, 32: 2568–2586

    Article  MathSciNet  MATH  Google Scholar 

  26. Flandoli F, Luo D J. Convergence of transport noise to Ornstein-Uhlenbeck for 2D Euler equations under the enstrophy measure. Ann Probab, 2020, 48: 264–295

    Article  MathSciNet  MATH  Google Scholar 

  27. Flandoli F, Luo D J. High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations. Probab Theory Related Fields, 2021, 180: 309–363

    Article  MathSciNet  MATH  Google Scholar 

  28. Flandoli F, Romito M. Partial regularity for the stochastic Navier-Stokes equations. Trans Amer Math Soc, 2002, 354: 2207–2241

    Article  MathSciNet  MATH  Google Scholar 

  29. Flandoli F, Romito M. Markov selections for the 3D stochastic Navier-Stokes equations. Probab Theory Related Fields, 2008, 140: 407–458

    Article  MathSciNet  MATH  Google Scholar 

  30. Galeati L. On the convergence of stochastic transport equations to a deterministic parabolic one. Stoch Partial Differ Equ Anal Comput, 2020, 8: 833–868

    MathSciNet  MATH  Google Scholar 

  31. Gassiat P, Gess B. Regularization by noise for stochastic Hamilton-Jacobi equations. Probab Theory Related Fields, 2019, 173: 1063–1098

    Article  MathSciNet  MATH  Google Scholar 

  32. Gess B. Regularization and well-posedness by noise for ordinary and partial differential equations. In: Stochastic Partial Differential Equations and Related Fields. Springer Proceedings in Mathematics & Statistics, vol. 229. Cham: Springer, 2018, 43–67

    Chapter  MATH  Google Scholar 

  33. Gess B, Maurelli M. Well-posedness by noise for scalar conservation laws. Comm Partial Differential Equations, 2018, 43: 1702–1736

    Article  MathSciNet  MATH  Google Scholar 

  34. Gyöngy I. Existence and uniqueness results for semilinear stochastic partial differential equations. Stochastic Process Appl, 1998, 73: 271–299

    Article  MathSciNet  MATH  Google Scholar 

  35. He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235–254

    Article  MathSciNet  MATH  Google Scholar 

  36. Iyer G, Xu X Q, Zlatoš A. Convection-induced singularity suppression in the Keller-Segel and other non-linear PDEs. Trans Amer Math Soc, 2021, 374: 6039–6058

    Article  MathSciNet  MATH  Google Scholar 

  37. Krylov N V, Röckner M. Strong solutions of stochastic equations with singular time dependent drift. Probab Theory Related Fields, 2005, 131: 154–196

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin F H, Zhang P. Global small solutions to an MHD-type system: The three-dimensional case. Comm Pure Appl Math, 2014, 67: 531–580

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo D J, Saal M. A scaling limit for the stochastic mSQG equations with multiplicative transport noises. Stoch Dyn, 2020, 20: 2040001

    Article  MathSciNet  MATH  Google Scholar 

  40. Luo D J, Saal M. Regularization by noise for the point vortex model of mSQG equations. Acta Math Sin (Engl Ser), 2021, 37: 408–422

    Article  MathSciNet  MATH  Google Scholar 

  41. Mikulevicius R, Rozovskii B L. Global L2-solutions of stochastic Navier-Stokes equations. Ann Probab, 2005, 33: 137–176

    Article  MathSciNet  MATH  Google Scholar 

  42. Rozovsky B L, Lototsky S V. Stochastic Evolution Systems: Linear Theory and Applications to Non-Linear Filtering, 2nd ed. Probability Theory and Stochastic Modelling, vol. 89. Cham: Springer, 2018

    Book  MATH  Google Scholar 

  43. Sango M. Magnetohydrodynamic turbulent flows: Existence results. Phys D, 2010, 239: 912–923

    Article  MathSciNet  MATH  Google Scholar 

  44. Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36: 635–664

    Article  MathSciNet  MATH  Google Scholar 

  45. Simon J. Compact sets in the space Lp(O, T; B). Ann Mat Pura Appl (4), 1987, 146: 65–96

    Article  MathSciNet  MATH  Google Scholar 

  46. Sritharan S S, Sundar P. The stochastic magneto-hydrodynamic system. Infin Dimens Anal Quantum Probab Relat Top, 1999, 2: 241–265

    Article  MathSciNet  MATH  Google Scholar 

  47. Veretennikov A J. On strong solution and explicit formulas for solutions of stochastic integral equations. Math USSR Sb, 1981, 39: 387–403

    Article  MATH  Google Scholar 

  48. Wei D Y, Zhang Z F. Global well-posedness of the MHD equations via the comparison principle. Sci China Math, 2018, 61: 2111–2120

    Article  MathSciNet  MATH  Google Scholar 

  49. Wei D Y, Zhang Z F, Zhao W R. Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. Adv Math, 2020, 362: 106963

    Article  MathSciNet  MATH  Google Scholar 

  50. Zeng Z R. Mild solutions of the stochastic MHD equations driven by fractional Brownian motions. J Math Anal Appl, 2020, 491: 124296

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang X C. Strong solutions of SDES with singular drift and Sobolev diffusion coefficients. Stochastic Process Appl, 2005, 115: 1805–1818

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang X C. Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron J Probab, 2011, 16: 1096–1116

    Article  MathSciNet  MATH  Google Scholar 

  53. Zlatoš A. Diffusion in fluid flow: Dissipation enhancement by flows in 2D. Comm Partial Differential Equations, 2010, 35: 496–534

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2020YFA0712700), National Natural Science Foundation of China (Grant Nos. 11931004 and 12090014) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. Y2021002). The author thanks the referees for helpful comments on the first version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D. Regularization by transport noises for 3D MHD equations. Sci. China Math. 66, 1375–1394 (2023). https://doi.org/10.1007/s11425-021-1981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1981-9

Keywords

MSC(2020)

Navigation