Abstract
In this paper, we study the uniformly strong convergence of the Kähler-Ricci flow on a Fano manifold with varied initial metrics and smoothly deformed complex structures. As an application, we prove the uniqueness of Kähler-Ricci solitons in the sense of diffeomorphism orbits. The result generalizes Tian-Zhu’s theorem for the uniqueness of of Kähler-Ricci solitons on a compact complex manifold, and it is also a generalization of Chen-Sun’s result of the uniqueness of Kähler-Einstein metric orbits.
Similar content being viewed by others
References
Alper J, Blum H, Halpern-Leistner D, et al. Reductivity of the automorphism group of K-polystable Fano varieties. Invent Math, 2020, 222: 995–1032
Bamler R. Convergence of Ricci flows with bounded scalar curvature. Ann of Math (2), 2018, 188: 753–831
Berman R J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Invent Math, 2016, 203: 973–1025
Berman R J, Boucksom S, Eyssidieux P, et al. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. J Reine Angew Math, 2019, 751: 27–89
Berman R J, Witt Nyström D. Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons. arXiv:1401.8264, 2014
Berndtsson B. A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent Math, 2015, 200: 149–200
Blum H, Xu C Y. Uniqueness of K-polystable degenerations of Fano varieties. Ann of Math (2), 2019, 190: 609–656
Cao H D. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent Math, 1985, 81: 359–372
Cheeger J, Colding T. On the structure of spaces with Ricci curvature bounded below. I. J Differential Geom, 1997, 46: 406–480
Cheeger J, Colding T, Tian G. On the singularities of spaces with bounded Ricci curvature. Geom Funct Anal, 2002, 12: 873–914
Chen X, Sun S. Calabi flow, Geodesic rays, and uniqueness of constant scalar curvature Kähler metrics. Ann of Math (2), 2014, 180: 407–454
Chen X, Sun S, Wang B. Kähler-Ricci flow, Kähler-Einstein metric, and K-stability. Geom Topol, 2018, 22: 3145–3173
Chen X, Wang B. Space of Ricci flows (II)—part B: Weak compactness of the flows. J Differential Geom, 2020, 116: 1–123
Datar D, Székelyhidi G. Kähler-Einstein metrics along the smooth continuity method. Geom Funct Anal, 2016, 26: 975–1010
Delcroix T. K-stability of Fano spherical varieties. Ann Sci Éc Norm Supér (4), 2020, 53: 615–662
Dervan R, Székelyhidi G. Kähler-Ricci flow and optimal degenerations. J Differential Geom, 2020, 116: 187–203
Ding W Y, Tian G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent Math, 1992, 110: 523–571
Donaldson S. Stability, birational transformations and the Kähler-Einstein problems. In: Surveys in Differential Geometry, vol. 17. Somerville: International Press, 2012, 203–228
Donaldson S, Sun S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math, 2014, 213: 63–106
Donaldson S, Sun S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II. J Differential Geom, 2017, 107: 327–371
Eyssidieux P, Guedj V, Zeriahi A. Singular Kähler-Einstein metrics. J Amer Math Soc, 2009, 22: 607–639
Futaki A. Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Mathematics, vol. 1314. Berlin: Springer-Verlag, 1988
Han J, Li C. Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties. arXiv:2009.01010v1, 2020
He W. Kähler-Ricci soliton and H-functional. Asian J Math, 2016, 20: 645–664
Jiang W, Wang F, Zhu X H. Bergman kernels for a sequence of almost Kähler-Ricci solitons. Ann Inst Fourier (Grenoble), 2017, 67: 1279–1320
Kodaira K. Complex Manifolds and Deformation of Complex Structures. Berlin-Heidelberg: Springer-Verlag, 1986
Kolodziej S. The complex Monge-Ampère equation. Acta Math, 1998, 180: 69–117
Li C. Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds. J Reine Angew Math, 2017, 733: 55–85
Li C, Wang X W, Xu C Y. Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds. Ann Sci Éc Norm Supér (4), 2018, 51: 739–772
Li C, Wang X W, Xu C Y. On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties. Duke Math J, 2019, 168: 1387–1459
Liu G, Szekelyhidi G. Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below. Geom Funct Anal, 2022, in press
Matsushima Y. Sur la structure du groupe d’homeo morphismes analytiques d’une certaine variété Kaehlérinne. Nagoya Math J, 1957, 11: 145–150
Pasquier B. On some smooth projective two-orbit varieties with Picard number 1. Math Ann, 2010, 344: 963–987
Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159, 2012
Sesum N, Tian G. Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J Inst Math Jussieu, 2008, 7: 575–587
Spotti C, Sun S. Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds. Pure Appl Math Q, 2017, 13: 477–515
Sun S, Wang Y Q. On the Kähler-Ricci flow near a Kähler-Einstein metric. J Reine Angew Math, 2015, 699: 143–158
Tian G. On Calabi’s conjecture for complex surfaces. Invent Math, 1990, 101: 101–172
Tian G. Kähler-Einstein metrics with positive scalar curvature. Invent Math, 1997, 130: 1–37
Tian G. Existence of Einstein metrics on Fano manifolds. In: Metric and Differential Geometry. Progress in Mathematics, vol. 297. Basel: Birkhaäuser, 2012, 119–159
Tian G. Partial C0-estimates for Kähler-Einstein metrics. Commun Math Stat, 2013, 1: 105–113
Tian G. K-stability and Kähler-Einstein metrics. Comm Pure Appl Math, 2015, 68: 1085–1156
Tian G, Wang F. On the existence of conic Kähler-Einstein metrics. Adv Math, 2020, 375: 107413
Tian G, Zhang L, Zhu X H. Kähler-Ricci flow for deformed complex structures. arXiv:2107.12680, 2021
Tian G, Zhang S J, Zhang Z L, et al. Perelman’s entropy and Kähler-Ricci flow on a Fano manifold. Trans Amer Math Soc, 2013, 365: 6669–6695
Tian G, Zhang Z L. Regularity of Kähler-Ricci flows on Fano manifolds. Acta Math, 2016, 216: 127–176
Tian G, Zhu X H. Uniqueness of Kähler-Ricci solitons. Acta Math, 2000, 184: 271–305
Tian G, Zhu X H. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment Math Helv, 2002, 77: 297–325
Tian G, Zhu X H. Convergence of the Kähler-Ricci flow. J Amer Math Soc, 2009, 17: 675–699
Tian G, Zhu X H. Convergence of the Kähler-Ricci flow on Fano manifolds. J Reine Angew Math, 2013, 678: 223–245
Wang F, Zhou B, Zhu X H. Modified Futaki invariant and equivariant Riemann-Roch formula. Adv Math, 2016, 289: 1205–1235
Wang F, Zhu X H. Tian’s partial C0-estimate implies Hamilton-Tian’s conjecture. Adv Math, 2021, 381: 107619
Wang Y Q. On the Kähler-Ricci flows near the Mukai-Umemura 3-fold. Int Math Res Not IMRN, 2016, 7: 2145–2156
Xiong M K. Kähler-Ricci solitons and generalized Tian-Zhu’s invariant. Internat J Math, 2014, 25: 1450068
Zhang K. Some refinements of the partial C0 estimate. arXiv:1911.11328, 2019
Zhang Q. A uniform Sobolev inequality under Ricci flow. Int Math Res Not IMRN, 2007, 2007: rnm056
Zhang Q. Bounds on volume growth of geodesic balls under Ricci flow. Math Res Lett, 2012, 19: 245–253
Acknowledgements
The first author was supported by National Natural Science Foundation of China (Grant No. 11971423) and the Fundamental Research Funds for the Central Universities. The second author was supported by National Natural Science Foundation of China (Grant No. 11771019), Beijing Science Foundation (Grant No. Z180004) and National Key R&D Program of China (Grant No. SQ2020YFA070059). The authors thank Professor Gang Tian for inspiring conversations. The authors also thank Chi Li for telling them that the uniqueness of algebraic structures of \({\tilde M_\infty}\) in Theorem 1.1 was solved by using non-Archimedean geometry in his recent joint paper with Han [23].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, F., Zhu, X. Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold. Sci. China Math. 65, 2337–2370 (2022). https://doi.org/10.1007/s11425-021-1928-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-021-1928-1