Skip to main content
Log in

Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the uniformly strong convergence of the Kähler-Ricci flow on a Fano manifold with varied initial metrics and smoothly deformed complex structures. As an application, we prove the uniqueness of Kähler-Ricci solitons in the sense of diffeomorphism orbits. The result generalizes Tian-Zhu’s theorem for the uniqueness of of Kähler-Ricci solitons on a compact complex manifold, and it is also a generalization of Chen-Sun’s result of the uniqueness of Kähler-Einstein metric orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper J, Blum H, Halpern-Leistner D, et al. Reductivity of the automorphism group of K-polystable Fano varieties. Invent Math, 2020, 222: 995–1032

    Article  MathSciNet  MATH  Google Scholar 

  2. Bamler R. Convergence of Ricci flows with bounded scalar curvature. Ann of Math (2), 2018, 188: 753–831

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman R J. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Invent Math, 2016, 203: 973–1025

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman R J, Boucksom S, Eyssidieux P, et al. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. J Reine Angew Math, 2019, 751: 27–89

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman R J, Witt Nyström D. Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons. arXiv:1401.8264, 2014

  6. Berndtsson B. A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent Math, 2015, 200: 149–200

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum H, Xu C Y. Uniqueness of K-polystable degenerations of Fano varieties. Ann of Math (2), 2019, 190: 609–656

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao H D. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent Math, 1985, 81: 359–372

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger J, Colding T. On the structure of spaces with Ricci curvature bounded below. I. J Differential Geom, 1997, 46: 406–480

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheeger J, Colding T, Tian G. On the singularities of spaces with bounded Ricci curvature. Geom Funct Anal, 2002, 12: 873–914

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen X, Sun S. Calabi flow, Geodesic rays, and uniqueness of constant scalar curvature Kähler metrics. Ann of Math (2), 2014, 180: 407–454

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen X, Sun S, Wang B. Kähler-Ricci flow, Kähler-Einstein metric, and K-stability. Geom Topol, 2018, 22: 3145–3173

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen X, Wang B. Space of Ricci flows (II)—part B: Weak compactness of the flows. J Differential Geom, 2020, 116: 1–123

    Article  MathSciNet  MATH  Google Scholar 

  14. Datar D, Székelyhidi G. Kähler-Einstein metrics along the smooth continuity method. Geom Funct Anal, 2016, 26: 975–1010

    Article  MathSciNet  MATH  Google Scholar 

  15. Delcroix T. K-stability of Fano spherical varieties. Ann Sci Éc Norm Supér (4), 2020, 53: 615–662

    Article  MathSciNet  MATH  Google Scholar 

  16. Dervan R, Székelyhidi G. Kähler-Ricci flow and optimal degenerations. J Differential Geom, 2020, 116: 187–203

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding W Y, Tian G. Kähler-Einstein metrics and the generalized Futaki invariants. Invent Math, 1992, 110: 523–571

    Article  MATH  Google Scholar 

  18. Donaldson S. Stability, birational transformations and the Kähler-Einstein problems. In: Surveys in Differential Geometry, vol. 17. Somerville: International Press, 2012, 203–228

    Google Scholar 

  19. Donaldson S, Sun S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math, 2014, 213: 63–106

    Article  MathSciNet  MATH  Google Scholar 

  20. Donaldson S, Sun S. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II. J Differential Geom, 2017, 107: 327–371

    Article  MathSciNet  MATH  Google Scholar 

  21. Eyssidieux P, Guedj V, Zeriahi A. Singular Kähler-Einstein metrics. J Amer Math Soc, 2009, 22: 607–639

    Article  MathSciNet  MATH  Google Scholar 

  22. Futaki A. Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Mathematics, vol. 1314. Berlin: Springer-Verlag, 1988

    Book  MATH  Google Scholar 

  23. Han J, Li C. Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties. arXiv:2009.01010v1, 2020

  24. He W. Kähler-Ricci soliton and H-functional. Asian J Math, 2016, 20: 645–664

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang W, Wang F, Zhu X H. Bergman kernels for a sequence of almost Kähler-Ricci solitons. Ann Inst Fourier (Grenoble), 2017, 67: 1279–1320

    Article  MathSciNet  MATH  Google Scholar 

  26. Kodaira K. Complex Manifolds and Deformation of Complex Structures. Berlin-Heidelberg: Springer-Verlag, 1986

    Book  MATH  Google Scholar 

  27. Kolodziej S. The complex Monge-Ampère equation. Acta Math, 1998, 180: 69–117

    Article  MathSciNet  MATH  Google Scholar 

  28. Li C. Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds. J Reine Angew Math, 2017, 733: 55–85

    MathSciNet  MATH  Google Scholar 

  29. Li C, Wang X W, Xu C Y. Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds. Ann Sci Éc Norm Supér (4), 2018, 51: 739–772

    Article  MathSciNet  MATH  Google Scholar 

  30. Li C, Wang X W, Xu C Y. On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties. Duke Math J, 2019, 168: 1387–1459

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu G, Szekelyhidi G. Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below. Geom Funct Anal, 2022, in press

  32. Matsushima Y. Sur la structure du groupe d’homeo morphismes analytiques d’une certaine variété Kaehlérinne. Nagoya Math J, 1957, 11: 145–150

    Article  MathSciNet  MATH  Google Scholar 

  33. Pasquier B. On some smooth projective two-orbit varieties with Picard number 1. Math Ann, 2010, 344: 963–987

    Article  MathSciNet  MATH  Google Scholar 

  34. Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159, 2012

  35. Sesum N, Tian G. Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman). J Inst Math Jussieu, 2008, 7: 575–587

    Article  MathSciNet  MATH  Google Scholar 

  36. Spotti C, Sun S. Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds. Pure Appl Math Q, 2017, 13: 477–515

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun S, Wang Y Q. On the Kähler-Ricci flow near a Kähler-Einstein metric. J Reine Angew Math, 2015, 699: 143–158

    MathSciNet  MATH  Google Scholar 

  38. Tian G. On Calabi’s conjecture for complex surfaces. Invent Math, 1990, 101: 101–172

    Article  MathSciNet  MATH  Google Scholar 

  39. Tian G. Kähler-Einstein metrics with positive scalar curvature. Invent Math, 1997, 130: 1–37

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian G. Existence of Einstein metrics on Fano manifolds. In: Metric and Differential Geometry. Progress in Mathematics, vol. 297. Basel: Birkhaäuser, 2012, 119–159

    Chapter  Google Scholar 

  41. Tian G. Partial C0-estimates for Kähler-Einstein metrics. Commun Math Stat, 2013, 1: 105–113

    Article  MathSciNet  Google Scholar 

  42. Tian G. K-stability and Kähler-Einstein metrics. Comm Pure Appl Math, 2015, 68: 1085–1156

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian G, Wang F. On the existence of conic Kähler-Einstein metrics. Adv Math, 2020, 375: 107413

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian G, Zhang L, Zhu X H. Kähler-Ricci flow for deformed complex structures. arXiv:2107.12680, 2021

  45. Tian G, Zhang S J, Zhang Z L, et al. Perelman’s entropy and Kähler-Ricci flow on a Fano manifold. Trans Amer Math Soc, 2013, 365: 6669–6695

    Article  MathSciNet  MATH  Google Scholar 

  46. Tian G, Zhang Z L. Regularity of Kähler-Ricci flows on Fano manifolds. Acta Math, 2016, 216: 127–176

    Article  MathSciNet  MATH  Google Scholar 

  47. Tian G, Zhu X H. Uniqueness of Kähler-Ricci solitons. Acta Math, 2000, 184: 271–305

    Article  MathSciNet  MATH  Google Scholar 

  48. Tian G, Zhu X H. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Comment Math Helv, 2002, 77: 297–325

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian G, Zhu X H. Convergence of the Kähler-Ricci flow. J Amer Math Soc, 2009, 17: 675–699

    MATH  Google Scholar 

  50. Tian G, Zhu X H. Convergence of the Kähler-Ricci flow on Fano manifolds. J Reine Angew Math, 2013, 678: 223–245

    MathSciNet  MATH  Google Scholar 

  51. Wang F, Zhou B, Zhu X H. Modified Futaki invariant and equivariant Riemann-Roch formula. Adv Math, 2016, 289: 1205–1235

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang F, Zhu X H. Tian’s partial C0-estimate implies Hamilton-Tian’s conjecture. Adv Math, 2021, 381: 107619

    Article  MATH  Google Scholar 

  53. Wang Y Q. On the Kähler-Ricci flows near the Mukai-Umemura 3-fold. Int Math Res Not IMRN, 2016, 7: 2145–2156

    Article  MATH  Google Scholar 

  54. Xiong M K. Kähler-Ricci solitons and generalized Tian-Zhu’s invariant. Internat J Math, 2014, 25: 1450068

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang K. Some refinements of the partial C0 estimate. arXiv:1911.11328, 2019

  56. Zhang Q. A uniform Sobolev inequality under Ricci flow. Int Math Res Not IMRN, 2007, 2007: rnm056

    MathSciNet  Google Scholar 

  57. Zhang Q. Bounds on volume growth of geodesic balls under Ricci flow. Math Res Lett, 2012, 19: 245–253

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11971423) and the Fundamental Research Funds for the Central Universities. The second author was supported by National Natural Science Foundation of China (Grant No. 11771019), Beijing Science Foundation (Grant No. Z180004) and National Key R&D Program of China (Grant No. SQ2020YFA070059). The authors thank Professor Gang Tian for inspiring conversations. The authors also thank Chi Li for telling them that the uniqueness of algebraic structures of \({\tilde M_\infty}\) in Theorem 1.1 was solved by using non-Archimedean geometry in his recent joint paper with Han [23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhu, X. Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold. Sci. China Math. 65, 2337–2370 (2022). https://doi.org/10.1007/s11425-021-1928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1928-1

Keywords

MSC(2020)

Navigation