Skip to main content
Log in

Unified convergence analysis of a second-order method of multipliers for nonlinear conic programming

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we accomplish the unified convergence analysis of a second-order method of multipliers (i.e., a second-order augmented Lagrangian method) for solving the conventional nonlinear conic optimization problems. Specifically, the algorithm that we investigate incorporates a specially designed nonsmooth (generalized) Newton step to furnish a second-order update rule for the multipliers. We first show in a unified fashion that under a few abstract assumptions, the proposed method is locally convergent and possesses a (nonasymptotic) superlinear convergence rate, even though the penalty parameter is fixed and/or the strict complementarity fails. Subsequently, we demonstrate that for the three typical scenarios, i.e., the classic nonlinear programming, the nonlinear second-order cone programming and the nonlinear semidefinite programming, these abstract assumptions are nothing but exactly the implications of the iconic sufficient conditions that are assumed for establishing the Q-linear convergence rates of the method of multipliers without assuming the strict complementarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh F, Goldfarb D. Second-order cone programming. Math Program, 2003, 95: 3–51

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas D P. Multiplier methods: A survey. Automatica, 1976, 12: 133–145

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas D P. On penalty and multiplier methods for constrained minimization. SIAM J Control Optim, 1976, 14: 216–235

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas D P. On the convergence properties of second-order methods of multipliers. J Optim Theory Appl, 1978, 25: 443–449

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas D P. Constrained Optimization and Lagrange Multiplier Methods. New York: Academic Press, 1982

    MATH  Google Scholar 

  6. Bonnans J F, Ramírez H. Perturbation analysis of second-order cone programming problems. Math Program, 2005, 104: 205–227

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans J F, Shapiro A. Nondegeneracy and quantitative stability of parameterized optimization problems with multiple solutions. SIAM J Optim, 1998, 8: 940–946

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnans J F, Shapiro A. Perturbation Analysis of Optimization Problems. New York: Springer, 2000

    Book  MATH  Google Scholar 

  9. Brusch R. A rapidly convergent method for equality constrained function minimization. In: Proceedings of 1973 IEEE Conference on Decision and Control. New York: IEEE, 1973, 80–81

    Google Scholar 

  10. Bueno L, Haeser G, Santos L. Towards an efficient augmented Lagrangian method for convex quadratic programming. Comput Optim Appl, 2020, 76: 767–800

    Article  MathSciNet  MATH  Google Scholar 

  11. Buys J. Dual algorithms for constrained optimization problems. PhD Thesis. Netherlands: University of Leiden, 1972

    Google Scholar 

  12. Chen J-S, Chen X, Tseng P. Analysis of nonsmooth vector-valued functions associated with second-order cones. Math Program, 2004, 101: 95–117

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen L, Liao A P. On the convergence properties of a second-order augmented Lagrangian method for nonlinear programming problems with inequality constraints. J Optim Theory Appl, 2020, 187: 248–265

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen X, Sun D F, Sun J. Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput Optim Appl, 2003, 25: 39–56

    Article  MathSciNet  MATH  Google Scholar 

  15. Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983

    MATH  Google Scholar 

  16. Conn A, Gould N, Toint P. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J Numer Anal, 1991, 28: 545–572

    Article  MathSciNet  MATH  Google Scholar 

  17. Conn A, Gould N, Toint P. Lancelot: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Berlin-Heidelberg: Springer-Verlag, 1992

    Book  MATH  Google Scholar 

  18. Contesse-Becker L. Extended convergence results for the method of multipliers for nonstrictly binding inequality constraints. J Optim Theory Appl, 1993, 79: 273–310

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher R. An ideal penalty function for constrained optimization. IMA J Appl Math, 1975, 15: 319–342

    Article  MathSciNet  MATH  Google Scholar 

  20. Fontecilla R, Steihaug T, Tapia R. A convergence theory for a class of quasi-Newton methods for constrained optimization. SIAM J Numer Anal, 1987, 24: 1133–1151

    Article  MathSciNet  MATH  Google Scholar 

  21. Fukushima M, Luo Z Q, Tseng P. Smoothing functions for second-order-cone complementarity problems. SIAM J Optim, 2001, 12: 436–460

    Article  MathSciNet  MATH  Google Scholar 

  22. Hayashi S, Yamashita N, Fukushima M. A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J Optim, 2005, 15: 593–615

    Article  MathSciNet  MATH  Google Scholar 

  23. Hestenes M. Multiplier and gradient methods. J Optim Theory Appl, 1969, 4: 303–320

    Article  MathSciNet  MATH  Google Scholar 

  24. Ito K, Kunisch K. The augmented Lagrangian method for equality and inequality constraints in Hilbert spaces. Math Program, 1990, 46: 341–360

    Article  MathSciNet  MATH  Google Scholar 

  25. Kanzow C, Ferenczi I, Fukushima M. On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J Optim, 2009, 20: 297–320

    Article  MathSciNet  MATH  Google Scholar 

  26. Kummer B. Newton’s method based on generalized derivatives for nonsmooth functions: Convergence analysis. In: Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 382. Berlin-Heidelberg: Springer, 1992, 171–194

    Chapter  Google Scholar 

  27. Kummer B. Newton’s method for non-differentiable functions. In: Advances in Mathematical Optimization. Berlin: Akademie-Verlag, 1998, 114–125

    Google Scholar 

  28. Li X D, Sun D F, Toh K-C. A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM J Optim, 2018, 28: 433–458

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu Y J, Zhang L W. Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Nonlinear Anal, 2007, 67: 1359–1373

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu Y J, Zhang L W. Convergence of the augmented Lagrangian method for nonlinear optimization problems over second-order cones. J Optim Theory Appl, 2008, 139: 557–575

    Article  MathSciNet  MATH  Google Scholar 

  31. Meng F W, Sun D F, Zhao G Y. Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization. Math Program, 2005, 104: 561–581

    Article  MathSciNet  MATH  Google Scholar 

  32. Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim, 1977, 15: 959–972

    Article  MathSciNet  MATH  Google Scholar 

  33. Nocedal J, Wright S J. Numerical Optimization, 2nd ed. New York: Springer-Verlag, 2006

    MATH  Google Scholar 

  34. Outrata J V, Sun D F. On the coderivative of the projection operator onto the second-order cone. Set-Valued Anal, 2008, 16: 999

    Article  MathSciNet  MATH  Google Scholar 

  35. Pang J-S, Qi L Q. Nonsmooth equations: Motivation and algorithms. SIAM J Optim, 1993, 3: 443–465

    Article  MathSciNet  MATH  Google Scholar 

  36. Pang J-S, Sun D F, Sun J. Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math Oper Res, 2003, 28: 39–63

    Article  MathSciNet  MATH  Google Scholar 

  37. Powell M J D. A method for nonlinear constraints in minimization problems. In: Optimization. London: Academic Press, 1969, 283–298

    Google Scholar 

  38. Qi L Q. Convergence analysis of some algorithms for solving nonsmooth equations. Math Oper Res, 1993, 18: 227–244

    Article  MathSciNet  MATH  Google Scholar 

  39. Qi L Q, Sun J. A nonsmooth version of Newton’s method. Math Program, 1993, 58: 353–367

    Article  MathSciNet  MATH  Google Scholar 

  40. Robinson S M. Strongly regular generalized equations. Math Oper Res, 1980, 5: 43–62

    Article  MathSciNet  MATH  Google Scholar 

  41. Robinson S M. Local structure of feasible sets in nonlinear programming, part II: Nondegeneracy. In: Mathematical Programming at Oberwolfach II. Mathematical Programming Studies, vol. 22. Berlin-Heidelberg: Springer, 1984, 217–230

    Chapter  Google Scholar 

  42. Robinson S M. Constraint nondegeneracy in variational analysis. Math Oper Res, 2003, 28: 201–232

    Article  MathSciNet  MATH  Google Scholar 

  43. Rockafellar R T. The multiplier method of Hestenes and Powell applied to convex programming. J Optim Theory Appl, 1973, 12: 555–562

    Article  MathSciNet  MATH  Google Scholar 

  44. Rockafellar R T. A dual approach to solving nonlinear programming problems by unconstrained optimization. Math Program, 1973, 5: 354–373

    Article  MathSciNet  MATH  Google Scholar 

  45. Rockafellar R T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res, 1976, 1: 97–116

    Article  MathSciNet  MATH  Google Scholar 

  46. Rockafellar R T, Wets R J-B. Variational Analysis. Berlin: Springer-Verlag, 1998

    Book  MATH  Google Scholar 

  47. Shapiro A. Sensitivity analysis of generalized equations. J Math Sci, 2003, 115: 2554–2565

    Article  MathSciNet  MATH  Google Scholar 

  48. Sun D F. The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math Oper Res, 2006, 31: 761–776

    Article  MathSciNet  MATH  Google Scholar 

  49. Sun D F, Han J Y. Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM J Optim, 1997, 7: 463–480

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun D F, Sun J. Semismooth matrix valued functions. Math Oper Res, 2002, 27: 150–169

    Article  MathSciNet  MATH  Google Scholar 

  51. Sun D F, Sun J, Zhang L W. The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math Program, 2008, 114: 349–391

    Article  MathSciNet  MATH  Google Scholar 

  52. Tretyakov N. A method of penalty estimates for convex programming problems. Ékonom Mat Metody, 1973, 9: 525–540

    MathSciNet  Google Scholar 

  53. Yang L Q, Sun D F, Toh K-C. SDPNAL+: A majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math Program Comput, 2015, 7: 331–366

    Article  MathSciNet  MATH  Google Scholar 

  54. Yuan Y-X. Analysis on a superlinearly convergent augmented Lagrangian method. Acta Math Sin (Engl Ser), 2014, 30: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhao X Y, Sun D F, Toh K-C. A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J Optim, 2010, 20: 1737–1765

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11801158), the Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50040) and the Fundamental Research Funds for the Central Universities in China. The third author was supported by National Natural Science Foundation of China (Grant No. 11871002) and the General Program of Science and Technology of Beijing Municipal Education Commission (Grant No. KM201810005004). The authors thank Professor Liwei Zhang at Dalian University of Technology for pointing out a problem in the early version of this work. The authors also thank the anonymous referees for their comments and suggestions, which are very helpful in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhu, J. & Zhao, X. Unified convergence analysis of a second-order method of multipliers for nonlinear conic programming. Sci. China Math. 65, 2397–2422 (2022). https://doi.org/10.1007/s11425-021-1920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1920-5

Keywords

MSC(2020)

Navigation