Skip to main content
Log in

The global classical solution to a 1D two-fluid model with density-dependent viscosity and vacuum

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the initial-boundary problem for a 1D two-fluid model with density-dependent viscosity and vacuum. The pressure depends on two variables but the viscosity only depends on one of the densities. We prove the global existence and uniqueness of the classical solution in the one-dimensional space with large initial data and vacuum. We use a new Helmholtz free energy function and the material derivative of the velocity field to deal with the general pressure with two variables, without the equivalence condition. We also develop a new argument to handle the general viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bresch D, Desjardins B, Ghidaglia J, et al. Global weak solutions to a generic two-fluid model. Arch Ration Mech Anal, 2010, 196: 599–629

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresch D, Mucha P, Zatorska E. Finite-energy solutions for compressible two-fluid Stokes system. Arch Ration Mech Anal, 2019, 232: 987–1029

    Article  MathSciNet  MATH  Google Scholar 

  3. Carrillo J, Goudon T. Stability and asymptotic analysis of a fluid-particle interaction model. Comm Partial Differential Equations, 2006, 31: 1349–1379

    Article  MathSciNet  MATH  Google Scholar 

  4. Chapman S, Cowling T. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge: Cambridge University Press, 1990

    MATH  Google Scholar 

  5. Choe H, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190: 504–523

    Article  MathSciNet  MATH  Google Scholar 

  6. Choe H, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120: 91–129

    Article  MathSciNet  Google Scholar 

  7. Constantin P, Drivas T, Nguyen H, et al. Compressible fluids and active potentials. Ann Inst H Poincaré Anal Non Linéaire, 2020, 37: 145–180

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding S, Wen H, Zhu C. Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differential Equations, 2011, 251: 1696–1725

    Article  MathSciNet  MATH  Google Scholar 

  9. Evje S, Karlsen K. Global existence of weak solutions for a viscous two-phase model. J Differential Equations, 2008, 245: 2660–2703

    Article  MathSciNet  MATH  Google Scholar 

  10. Evje S, Wen H, Zhu C. On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow. Math Models Methods Appl Sci, 2017, 27: 323–346

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang D, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29: 1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl E. Compressible Navier-Stokes equations with a non-monotone pressure law. J Differential Equations, 2002, 184: 97–108

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo Z, Jiu Q, Xin Z. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39: 1402–1427

    Article  MathSciNet  MATH  Google Scholar 

  14. Haspot B. Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D. Math Nachr, 2018, 291: 2188–2203

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoff D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Differential Equations, 1995, 120: 215–254

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang X, Li J. Existence and blowup behavior of global strong solutions to the two-dimensional barotropic compressible Navier-Stokes system with vacuum and large initial data. J Math Pures Appl (9), 2016, 106: 123–154

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Paris: Eyrolles, 1975

    MATH  Google Scholar 

  18. Ishii M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Argonne National Laboratory Report ANL-77-47, https://www.osti.gov/servlets/purl/6871478-ToP1T3/, 1977

  19. Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190: 169–183

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang S, Xin Z, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12: 239–252

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiu Q, Li M, Ye Y. Global classical solution of the Cauchy problem to 1D compressible Navier-Stokes equations with large initial data. J Differential Equations, 2014, 257: 311–350

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiu Q, Wang Y, Xin Z. Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum. J Math Fluid Mech, 2014, 16: 483–521

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiu Q, Xin Z. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinet Relat Models, 2008, 1: 313–330

    Article  MathSciNet  MATH  Google Scholar 

  24. Li H, Li J, Xin Z. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm Math Phys, 2008, 281: 401–444

    Article  MathSciNet  MATH  Google Scholar 

  25. Li J, Xin Z. Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum. Ann PDE, 2009, 5: 7

    Article  MathSciNet  MATH  Google Scholar 

  26. Li Y, Sun Y. Global weak solutions to two-dimensional compressible MHD equations of viscous non-resistive fluids. J Differential Equations, 2019, 267: 3827–3851

    Article  MathSciNet  MATH  Google Scholar 

  27. Li Y, Sun Y, Zatorska E. Large time behavior for a compressible two-fluid model with algebraic pressure closure and large initial data. Nonlinearity, 2020, 33: 4075–4094

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu T, Xin Z, Yang T. Vacuum states for compressible flow. Discrete Contin Dyn Syst, 1998, 4: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  29. Mellet A, Vasseur A. On the barotropic compressible Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32: 431–452

    Article  MathSciNet  MATH  Google Scholar 

  30. Mellet A, Vasseur A. Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Comm Math Phys, 2008, 281: 573–596

    Article  MathSciNet  MATH  Google Scholar 

  31. Novotný A, Pokorný M. Weak solutions for some compressible multicomponent fluid models. Arch Ration Mech Anal, 2020, 235: 355–403

    Article  MathSciNet  MATH  Google Scholar 

  32. Okada M, Matus̆ů-Nec̆asová S̆, Makino T. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII Sci Mat, 2002, 48: 1–20

    Article  MathSciNet  Google Scholar 

  33. Qin X, Yao Z. Global smooth solutions of the compressible Navier-Stokes equations with density-dependent viscosity. J Differential Equations, 2008, 244: 2041–2061

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruan L, Trakhinin Y. Elementary symmetrization of inviscid two-fluid flow equations giving a number of instant results. Phys D, 2019, 391: 66–71

    Article  MathSciNet  MATH  Google Scholar 

  35. Vaigant V, Kazhikhov A. On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. Sib Math J, 1995, 36: 1108–1141

    Article  MathSciNet  MATH  Google Scholar 

  36. Vasseur A, Wen H, Yu C. Global weak solution to the viscous two-fluid model with finite energy. J Math Pures Appl (9), 2019, 125: 247–282

    Article  MathSciNet  MATH  Google Scholar 

  37. Vasseur A, Yu C. Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent Math, 2016, 206: 935–974

    Article  MathSciNet  MATH  Google Scholar 

  38. Vong S, Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J Differential Equations, 2003, 192: 475–501

    Article  MathSciNet  MATH  Google Scholar 

  39. Wallis G. One-Dimensional Two-Phase Flow. New York: McGraw-Hill, 1969

    Google Scholar 

  40. Wen H, Zhu L. Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field. J Differential Equations, 2018, 264: 2377–2406

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang T, Yao Z, Zhu C. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Partial Differential Equations, 2001, 26: 965–981

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang T, Zhu C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230: 329–363

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Shantou University funding (Grant No. NTF20025), and National Natural Science Foundation of China (Grant No. 12101386). The second author was supported by National Natural Science Foundation of China (Grant Nos. 12171160, 11771150 and 11831003), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515310015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhu, C. The global classical solution to a 1D two-fluid model with density-dependent viscosity and vacuum. Sci. China Math. 65, 2563–2582 (2022). https://doi.org/10.1007/s11425-021-1906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1906-2

Keywords

MSC(2020)

Navigation