Skip to main content
Log in

When the Schur functor induces a triangle-equivalence between Gorenstein defect categories

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let R be an Artin algebra and e be an idempotent of R. Assume that Tor eRei (Re, G) = 0 for any G ∈ Gproj eRe and i sufficiently large. Necessary and sufficient conditions are given for the Schur functor Se to induce a triangle-equivalence ⅅdef(R) ≃ ⅅdef(eRe). Combining this with a result of Psaroudakis et al. (2014), we provide necessary and sufficient conditions for the singular equivalence ⅅsg(R) ≃ ⅅsg(eRe) to restrict to a triangle-equivalence GprojRGprojeRe. Applying these to the triangular matrix algebra \(T = \left( {\matrix{A & M \cr 0 & B \cr } } \right)\), corresponding results between candidate categories of T and A (resp. B) are obtained. As a consequence, we infer Gorensteinness and CM (Cohen-Macaulay)-freeness of T from those of A (resp. B). Some concrete examples are given to indicate that one can realise the Gorenstein defect category of a triangular matrix algebra as the singularity category of one of its corner algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asadollahi J, Salarian S. On the vanishing of Ext over formal triangular matrix rings. Forum Math, 2006, 18: 951–966

    Article  MathSciNet  Google Scholar 

  2. Assem I, Simson D, Skowronski A. Elements of the Representation Theory of Associative Algebras, Volume 1. London Mathematical Society Student Texts, vol. 65. Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  3. Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge: Cambridge University Press, 1995

    Book  Google Scholar 

  4. Avramov L L, Foxby H-B. Homological dimensions of unbounded complexes. J Pure Appl Algebra, 1991, 71: 129–155

    Article  MathSciNet  Google Scholar 

  5. Avramov L L, Martsinkovsky A. Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc Lond Math Soc (3), 2002, 85: 393–440

    Article  MathSciNet  Google Scholar 

  6. Beligiannis A. The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization. Comm Algebra, 2000, 28: 4547–4596

    Article  MathSciNet  Google Scholar 

  7. Beligiannis A. On algebras of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973–2019

    Article  MathSciNet  Google Scholar 

  8. Bergh P A, Jørgensen D A, Oppermann S. The Gorenstein defect category. Q J Math, 2015, 66: 459–471

    Article  MathSciNet  Google Scholar 

  9. Buchweitz R-O. Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings. Https://tspace.library.utoronto.ca/handle/1807/16682, 1986

  10. Chen X-W. Singularity categories, Schur functors and triangular matrix rings. Algebr Represent Theor, 2009, 12: 181–191

    Article  MathSciNet  Google Scholar 

  11. Chen X-W. Relative singularity categories and Gorenstein-projective modules. Math Nachr, 2011, 284: 199–212

    Article  MathSciNet  Google Scholar 

  12. Chen X-W. Algebras with radical square zero are either self-injective or CM-free. Proc Amer Math Soc, 2012, 140: 93–98

    Article  MathSciNet  Google Scholar 

  13. Chen X-W. Singular equivalences induced by homological epimorphisms. Proc Amer Math Soc, 2014, 142: 2633–2640

    Article  MathSciNet  Google Scholar 

  14. Chen X-W. Singular equivalences of trivial extensions. Comm Algebra, 2016, 44: 1961–1970

    Article  MathSciNet  Google Scholar 

  15. Chen X-W, Zhang P. Quotient triangulated categories. Manuscripta Math, 2007, 123: 167–183

    Article  MathSciNet  Google Scholar 

  16. Cline E, Parshall B, Scott L. Finite dimensional algebras and highest weight categories. J Reine Angew Math, 1988, 391: 85–99

    MathSciNet  MATH  Google Scholar 

  17. Enochs E E, Jenda O M G. Gorenstein injective and projective modules. Math Z, 1995, 220: 611–633

    Article  MathSciNet  Google Scholar 

  18. Green J A. Polynomial Representations of GLn. Lecture Notes in Mathematics, vol. 830. New York: Springer, 1980

    Google Scholar 

  19. Happel D. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite-Dimensional Algebras. Progress in Mathematics, vol. 95. Basel: Birkhäuser, 1991, 389–404

    Chapter  Google Scholar 

  20. Happel D. Triangulated Categories in Representation Theory of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series, vol. 119. Cambridge: Cambridge University Press, 1988

    Book  Google Scholar 

  21. Holm H. Gorenstein homological dimensions. J Pure Appl Algebra, 2004, 189: 167–193

    Article  MathSciNet  Google Scholar 

  22. Hoshino M. Algebras of finite self-injective dimension. Proc Amer Math Soc, 1991, 112: 619–622

    Article  MathSciNet  Google Scholar 

  23. Kong F, Zhang P. From CM-finite to CM-free. J Pure Appl Algebra, 2016, 220: 782–801

    Article  MathSciNet  Google Scholar 

  24. Liu P, Lu M. Recollements of singularity categories and monomorphism categories. Comm Algebra, 2015, 43: 2443–2456

    Article  MathSciNet  Google Scholar 

  25. Lu M. Gorenstein defect categories of triangular matrix algebras. J Algebra, 2017, 480: 346–367

    Article  MathSciNet  Google Scholar 

  26. Miyachi J I. Localization of triangulated categories and derived categories. J Algebra, 1991, 141: 463–483

    Article  MathSciNet  Google Scholar 

  27. Orlov D. Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Proc Steklov Inst Math, 2004, 246: 227–248

    MathSciNet  MATH  Google Scholar 

  28. Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110

    Article  MathSciNet  Google Scholar 

  29. Psaroudakis C, Skartsaterhagen O, Solberg O. Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements. Trans Amer Math Soc Ser B, 2014, 1: 45–95

    Article  MathSciNet  Google Scholar 

  30. Rickard J. Derived categories and stable equivalence. J Pure Appl Algebra, 1989, 61: 303–317

    Article  MathSciNet  Google Scholar 

  31. Veliche O. Gorenstein projective dimension for complexes. Trans Amer Math Soc, 2006, 358: 1257–1283

    Article  MathSciNet  Google Scholar 

  32. Verdier J L. Categories dérivées. In: Cohomologie Étale. Lecture Notes in Mathematics, vol. 569. Berlin: Springer-Verlag, 1977, 262–311

    Chapter  Google Scholar 

  33. Zhang P. Gorenstein-projective modules and symmetric recollements. J Algebra, 2013, 388: 65–80

    Article  MathSciNet  Google Scholar 

  34. Zheng Y F, Huang Z Y. Triangulated equivalences involving Gorenstein projective modules. Canad Math Bull, 2017, 60: 879–890

    Article  MathSciNet  Google Scholar 

  35. Zhu S J. Left homotopy theory and Buchweitz’s theorem. Master Dissertation. Shanghai: Shanghai Jiao Tong University, 2011

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant Nos. 11626179, 12101474, 12171206 and 11701455), Natural Science Foundation of Jiangsu Province (Grant No. BK20211358), Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2017JQ1012 and 2020JM-178) and Fundamental Research Funds for the Central Universities (Grant Nos. JB160703 and 2452020182). The authors are grateful to the referees for reading this paper carefully and for many suggestions on mathematics and English expressions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuefei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hu, J. & Zheng, Y. When the Schur functor induces a triangle-equivalence between Gorenstein defect categories. Sci. China Math. 65, 2019–2034 (2022). https://doi.org/10.1007/s11425-021-1899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1899-3

Keywords

MSC(2020)

Navigation