Skip to main content
Log in

Asymptotic behavior of the principal eigenvalue and the basic reproduction ratio for periodic patch models

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the asymptotic behavior of the principal eigenvalue and the basic reproduction ratio associated with periodic population models in a patchy environment for small and large dispersal rates. We first deal with the eigenspace corresponding to the zero eigenvalue of the connectivity matrix. Then we investigate the limiting profile of the principal eigenvalue of an associated periodic eigenvalue problem as the dispersal rate goes to zero and infinity, respectively. We further establish the asymptotic behavior of the basic reproduction ratio in the case of small and large dispersal rates. Finally, we apply these results to a periodic Ross-Macdonald patch model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen L J, Bolker B M, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM J Appl Math, 2007, 67: 1283–1309

    Article  MathSciNet  Google Scholar 

  2. Allen L J, Bolker B M, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin Dyn Syst, 2008, 21: 1–20

    Article  MathSciNet  Google Scholar 

  3. Bacaer N, Guernaoui S. The epidemic threshold of vector-borne diseases with seasonality. J Math Biol, 2006, 53: 421–436

    Article  MathSciNet  Google Scholar 

  4. Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences. Philadelphia: SIAM, 1994

    Book  Google Scholar 

  5. Chen S, Shi J. Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment. SIAM J Appl Math, 2020, 80: 1247–1271

    Article  MathSciNet  Google Scholar 

  6. Chen S, Shi J, Shuai Z, et al. Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix. J Math Biol, 2020, 80: 2327–2361

    Article  MathSciNet  Google Scholar 

  7. Dancer E N. On the principal eigenvalue of linear cooperating elliptic systems with small diffusion. J Evol Equ, 2009, 9: 419–428

    Article  MathSciNet  Google Scholar 

  8. Daners D, Medina P K. Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Mathematics Series, vol. 279. Harlow: Longman Scientific & Technical, 1992

    MATH  Google Scholar 

  9. Diekmann O, Heesterbeek J, Metz J A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol, 1990, 28: 365–382

    Article  MathSciNet  Google Scholar 

  10. Gao D. Travel frequency and infectious diseases. SIAM J Appl Math, 2019, 79: 1581–1606

    Article  MathSciNet  Google Scholar 

  11. Gao D, Dong C-P. Fast diffusion inhibits disease outbreaks. Proc Amer Math Soc, 2020, 148: 1709–1722

    Article  MathSciNet  Google Scholar 

  12. Gao D, Lou Y, Ruan S. A periodic Ross-Macdonald model in a patchy environment. Discrete Contin Dyn Syst Ser B, 2014, 19: 3133–3145

    MathSciNet  MATH  Google Scholar 

  13. Gao D, Ruan S. A multipatch malaria model with logistic growth populations. SIAM J Appl Math, 2012, 72: 819–841

    Article  MathSciNet  Google Scholar 

  14. Hale J K. Ordinary Differential Equations. New York: Wiley, 1969

    MATH  Google Scholar 

  15. Hale J K. Large diffusivity and asymptotic behavior in parabolic systems. J Math Anal Appl, 1986, 118: 455–466

    Article  MathSciNet  Google Scholar 

  16. Hale J K, Rocha C. Varying boundary conditions with large diffusivity. J Math Pures Appl (9), 1987, 66: 139–158

    MathSciNet  MATH  Google Scholar 

  17. Hale J K, Sakamoto K. Shadow systems and attractors in reaction-diffusion equations. Appl Anal, 1989, 32: 287–303

    Article  MathSciNet  Google Scholar 

  18. Hutson V, Mischaikow K, Poláčik P. The evolution of dispersal rates in a heterogeneous time-periodic environment. J Math Biol, 2001, 43: 501–533

    Article  MathSciNet  Google Scholar 

  19. Kato T. Perturbation Theory for Linear Operators. Classics in Mathematics, vol. 132. Berlin: Springer-Verlag, 1995

    Book  Google Scholar 

  20. Krasnosel’skiĭ M A. Positive Solutions of Operator Equations. Groningen: P. Noordhoff, 1964

    MATH  Google Scholar 

  21. Lam K Y, Lou Y. Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications. J Dynam Differential Equations, 2016, 28: 29–48

    Article  MathSciNet  Google Scholar 

  22. Liang X, Zhang L, Zhao X-Q. The principal eigenvalue for degenerate periodic reaction-diffusion systems. SIAM J Math Anal, 2017, 49: 3603–3636

    Article  MathSciNet  Google Scholar 

  23. Liang X, Zhang L, Zhao X-Q. Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J Dynam Differential Equations, 2019, 31: 1247–1278

    Article  MathSciNet  Google Scholar 

  24. Magal P, Webb G F, Wu Y. On the basic reproduction number of reaction-diffusion epidemic models. SIAM J Appl Math, 2019, 79: 284–304

    Article  MathSciNet  Google Scholar 

  25. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer, 1983

    Book  Google Scholar 

  26. Peng R, Zhao X-Q. A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity, 2012, 25: 1451–1471

    Article  MathSciNet  Google Scholar 

  27. Peng R, Zhao X-Q. Effects of diffusion and advection on the principal eigenvalue of a periodic-parabolic problem with applications. Calc Var Partial Differential Equations, 2015, 54: 1611–1642

    Article  MathSciNet  Google Scholar 

  28. Reed M, Simon B. Methods of Modern Mathematical Physics. Functional Analysis, vol. 1. New York: Academic, 1980

    MATH  Google Scholar 

  29. Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, no. 41. Providence: Amer Math Soc, 2008

    Book  Google Scholar 

  30. Steward G, Sun J. Matrix Perturbation Theory. Boston: Academic Press, 1990

    Google Scholar 

  31. Thieme H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math, 2009, 70: 188–211

    Article  MathSciNet  Google Scholar 

  32. van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29–48

    Article  MathSciNet  Google Scholar 

  33. Wang W, Zhao X-Q. An epidemic model in a patchy environment. Math Biosci, 2004: 190: 97–112

    Article  MathSciNet  Google Scholar 

  34. Wang W, Zhao X-Q. Threshold dynamics for compartmental epidemic models in periodic environments. J Dynam Differential Equations, 2008, 20: 699–717

    Article  MathSciNet  Google Scholar 

  35. Wang W, Zhao X-Q. Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11: 1652–1673

    Article  MathSciNet  Google Scholar 

  36. Yang F-Y, Li W-T, Ruan S. Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions. J Differential Equations, 2019, 267: 2011–2051

    Article  MathSciNet  Google Scholar 

  37. Zhang F, Zhao X-Q. A periodic epidemic model in a patchy environment. J Math Anal Appl, 2007, 325: 496–516

    Article  MathSciNet  Google Scholar 

  38. Zhang L, Zhao X-Q. Asymptotic behavior of the basic reproduction ratio for periodic reaction-diffusion systems. SIAM J Math Anal, 2021, in press

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11901138) and the Natural Science Foundation of Shandong Province (Grant No. ZR2019QA006). The second author was supported by the National Sciences and Engineering Research Council of Canada. The authors are grateful to the anonymous referees for their careful reading and helpful comments, which led to an improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, XQ. Asymptotic behavior of the principal eigenvalue and the basic reproduction ratio for periodic patch models. Sci. China Math. 65, 1363–1382 (2022). https://doi.org/10.1007/s11425-021-1894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1894-2

Keywords

MSC(2020)

Navigation