Skip to main content
Log in

The Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this article we study the Gevrey regularization effect for the spatially inhomogeneous Boltzmann equation without angular cutoff. This equation is partially elliptic in the velocity direction and degenerates in the spatial variable. We consider the nonlinear Cauchy problem for the fluctuation around the Maxwellian distribution and prove that any solution with mild regularity will become smooth in the Gevrey class at positive time with the Gevrey index depending on the angular singularity. Our proof relies on the symbolic calculus for the collision operator and the global subelliptic estimate for the Cauchy problem of the linearized Boltzmann operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R. A review of Boltzmann equation with singular kernels. Kinet Relat Models, 2009, 2: 551–646

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre R, Desvillettes L, Villani C, et al. Entropy dissipation and long-range interactions. Arch Ration Mech Anal, 2000, 152: 327–355

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandre R, Hérau F, Li W-X. Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff. J Math Pures Appl (9), 2019, 126: 1–71

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandre R, Morimoto Y, Ukai S, et al. Uncertainty principle and kinetic equations. J Funct Anal, 2008, 255: 2013–2066

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexandre R, Morimoto Y, Ukai S, et al. Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198: 39–123

    Article  MathSciNet  MATH  Google Scholar 

  6. Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: II, global existence for hard potential. Anal Appl Singap, 2011, 9: 113–134

    Article  MathSciNet  MATH  Google Scholar 

  7. Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions. Arch Ration Mech Anal, 2011, 202: 599–661

    Article  MathSciNet  MATH  Google Scholar 

  8. Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: I, global existence for soft potential. J Funct Anal, 2012, 262: 915–1010

    Article  MathSciNet  MATH  Google Scholar 

  9. Alexandre R, Morimoto Y, Ukai S, et al. Local existence with mild regularity for the Boltzmann equation. Kinet Relat Models, 2013, 6: 1011–1041

    Article  MathSciNet  MATH  Google Scholar 

  10. Alexandre R, Safadi M. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I: Noncutoff case and Maxwellian molecules. Math Models Methods Appl Sci, 2005, 15: 907–920

    Article  MathSciNet  MATH  Google Scholar 

  11. Alexandre R, Safadi M. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II: Non cutoff case and non Maxwellian molecules. Discrete Contin Dyn Syst, 2009, 24: 1–11

    Article  MathSciNet  MATH  Google Scholar 

  12. Alexandre R, Villani C. On the Boltzmann equation for long-range interactions. Comm Pure Appl Math, 2002, 55: 30–70

    Article  MathSciNet  MATH  Google Scholar 

  13. Alonso R, Morimoto Y, Sun W, et al. De Giorgi argument for weighted L2L solutions to the non-cutoff Boltzmann equation. arXiv:2010.10065, 2020

  14. Alonso R, Morimoto Y, Sun W, et al. Non-cutoff Boltzmann equation with polynomial decay perturbations. Rev Mat Iberoam, 2021, 37: 189–292

    Article  MathSciNet  MATH  Google Scholar 

  15. Barbaroux J-M, Hundertmark D, Ried T, et al. Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equations without cutoff for Maxwellian molecules. Arch Ration Mech Anal, 2017, 225: 601–661

    Article  MathSciNet  MATH  Google Scholar 

  16. Bouchut F. Hypoelliptic regularity in kinetic equations. J Math Pures Appl (9), 2002, 81: 1135–1159

    Article  MathSciNet  MATH  Google Scholar 

  17. Cercignani C. Mathematical Methods in Kinetic Theory, 2nd ed. New York: Plenum Press, 1990

    Book  MATH  Google Scholar 

  18. Cercignani C, Illner R, Pulvirenti M. The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. New York: Springer-Verlag, 1994

    MATH  Google Scholar 

  19. Chen H, Li W-X, Xu C-J. Propagation of Gevrey regularity for solutions of Landau equations. Kinet Relat Models, 2008, 1: 355–368

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen H, Li W-X, Xu C-J. Analytic smoothness effect of solutions for spatially homogeneous Landau equation. J Differential Equations, 2010, 248: 77–94

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen H, Li W-X, Xu C-J. Gevrey hypoellipticity for a class of kinetic equations. Comm Partial Differential Equations, 2011, 36: 693–728

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen Y, Desvillettes L, He L. Smoothing effects for classical solutions of the full Landau equation. Arch Ration Mech Anal, 2009, 193: 21–55

    Article  MathSciNet  MATH  Google Scholar 

  23. Desvillettes L. About the regularizing properties of the non-cut-off Kac equation. Comm Math Phys, 1995, 168: 417–440

    Article  MathSciNet  MATH  Google Scholar 

  24. Desvillettes L. Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules. Transp Theory Stat Phys, 1997, 26: 341–357

    Article  MathSciNet  MATH  Google Scholar 

  25. Desvillettes L, Furioli G, Terraneo E. Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules. Trans Amer Math Soc, 2009, 361: 1731–1747

    Article  MathSciNet  MATH  Google Scholar 

  26. Desvillettes L, Villani C. On the spatially homogeneous Landau equation for hard potentials. I: Existence, uniqueness and smoothness. Comm Partial Differential Equations, 2000, 25: 179–259

    Article  MathSciNet  MATH  Google Scholar 

  27. Desvillettes L, Wennberg B. Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm Partial Differential Equations, 2004, 29: 133–155

    Article  MathSciNet  MATH  Google Scholar 

  28. DiPerna R J, Lions P-L. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann of Math (2), 1989, 130: 321–366

    Article  MathSciNet  MATH  Google Scholar 

  29. Duan R, Liu S, Sakamoto S, et al. Global mild solutions of the Landau and non-cutoff Boltzmann equations. Comm Pure Appl Math, 2021, 74: 932–1020

    Article  MathSciNet  MATH  Google Scholar 

  30. Glangetas L, Li H-G, Xu C-J. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinet Relat Models, 2016, 9: 299–371

    Article  MathSciNet  MATH  Google Scholar 

  31. Golse F, Imbert C, Mouhot C, et al. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. Ann Sc Norm Super Pisa Cl Sci (5), 2019, 19: 253–295

    MathSciNet  MATH  Google Scholar 

  32. Golse F, Lions P-L, Perthame B, et al. Regularity of the moments of the solution of a transport equation. J Funct Anal, 1988, 76: 110–125

    Article  MathSciNet  MATH  Google Scholar 

  33. Golse F, Perthame B, Sentis R. Un résultat de compacité pour les equations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C R Acad Sci Paris Sér I Math, 1985, 301: 341–344

    MathSciNet  MATH  Google Scholar 

  34. Gressman P T, Strain R M. Global classical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24: 771–847

    Article  MathSciNet  MATH  Google Scholar 

  35. Gressman P T, Strain R M. Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv Math, 2011, 227: 2349–2384

    Article  MathSciNet  MATH  Google Scholar 

  36. Henderson C, Snelson S. C smoothing for weak solutions of the inhomogeneous Landau equation. Arch Ration Mech Anal, 2020, 236: 113–143

    Article  MathSciNet  MATH  Google Scholar 

  37. Hérau F, Li W-X. Global hypoelliptic estimates for Landau-type operators with external potential. Kyoto J Math, 2013, 53: 533–565

    Article  MathSciNet  MATH  Google Scholar 

  38. Hérau F, Pravda-Starov K. Anisotropic hypoelliptic estimates for Landau-type operators. J Math Pures Appl (9), 2011, 95: 513–552

    Article  MathSciNet  MATH  Google Scholar 

  39. Hérau F, Tonon D, Tristani I. Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off. Comm Math Phys, 2020, 377: 697–771

    Article  MathSciNet  MATH  Google Scholar 

  40. Hörmander L. The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators. Berlin: Springer-Verlag, 1985

    MATH  Google Scholar 

  41. Huo Z, Morimoto Y, Ukai S, et al. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinet Relat Models, 2008, 1: 453–489

    Article  MathSciNet  MATH  Google Scholar 

  42. Imbert C, Mouhot C. Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients. arXiv:1505.04608, 2015

  43. Imbert C, Mouhot C. The Schauder estimate in kinetic theory with application to a toy nonlinear model. arXiv:1801.07891, 2018

  44. Imbert C, Mouhot C, Silvestre L. Decay estimates for large velocities in the Boltzmann equation without cut-off. J Éc Polytech Math, 2020, 7: 143–184

    Article  MathSciNet  MATH  Google Scholar 

  45. Imbert C, Silvestre L. The weak Harnack inequality for the Boltzmann equation without cut-off. J Eur Math Soc JEMS, 2020, 22: 507–592

    Article  MathSciNet  MATH  Google Scholar 

  46. Lerner N. The Wick calculus of pseudo-differential operators and some of its applications. Cubo Mat Educ, 2003, 5: 213–236

    MathSciNet  MATH  Google Scholar 

  47. Lerner N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Basel: Birkhäuser, 2010

    Book  MATH  Google Scholar 

  48. Lerner N, Morimoto Y, Pravda-Starov K. Hypoelliptic estimates for a linear model of the Boltzmann equation without angular cutoff. Comm Partial Differential Equations, 2012, 37: 234–284

    Article  MathSciNet  MATH  Google Scholar 

  49. Lerner N, Morimoto Y, Pravda-Starov K, et al. Gelfand-Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation. J Funct Anal, 2015, 269: 459–535

    Article  MathSciNet  MATH  Google Scholar 

  50. Li H-G, Xu C-J. The Cauchy problem for the radially symmetric homogeneous Boltzmann equation with Shubin class initial datum and Gelfand-Shilov smoothing effect. J Differential Equations, 2017, 263: 5120–5150

    Article  MathSciNet  MATH  Google Scholar 

  51. Li W-X. Global hypoelliptic estimates for fractional order kinetic equation. Math Nachr, 2014, 287: 610–637

    Article  MathSciNet  MATH  Google Scholar 

  52. Lions P-L. Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire. C R Acad Sci Paris Sér I Math, 1998, 326: 37–41

    Article  MathSciNet  MATH  Google Scholar 

  53. Morimoto Y, Ukai S. Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff. J Pseudo-Differ Oper Appl, 2010, 1: 139–159

    Article  MathSciNet  MATH  Google Scholar 

  54. Morimoto Y, Ukai S, Xu C-J, et al. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete Contin Dyn Syst, 2009, 24: 187–212

    Article  MathSciNet  MATH  Google Scholar 

  55. Morimoto Y, Xu C-J. Hypoellipticity for a class of kinetic equations. J Math Kyoto Univ, 2007, 47: 129–152

    MathSciNet  MATH  Google Scholar 

  56. Morimoto Y, Xu C-J. Ultra-analytic effect of Cauchy problem for a class of kinetic equations. J Differential Equations, 2009, 247: 596–617

    Article  MathSciNet  MATH  Google Scholar 

  57. Morimoto Y, Xu C-J. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinet Relat Models, 2020, 13: 951–978

    Article  MathSciNet  MATH  Google Scholar 

  58. Morimoto Y, Yang T. Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum. Ann Inst H Poincaré Anal Non Linéaire, 2015, 32: 429–442

    Article  MathSciNet  MATH  Google Scholar 

  59. Mouhot C. Explicit coercivity estimates for the Boltzmann and Landau operators. Comm Partial Differential Equations, 2006, 31: 1321–1348

    Article  MathSciNet  MATH  Google Scholar 

  60. Mouhot C, Strain R. Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J Math Pures Appl (9), 2007, 87: 515–535

    Article  MathSciNet  MATH  Google Scholar 

  61. Shubin M A. Pseudodifferential Operators and Spectral Theory. Springer Series in Soviet Mathematics. Berlin: Springer-Verlag, 1987

    Book  MATH  Google Scholar 

  62. Snelson S. Gaussian bounds for the inhomogeneous Landau equation with hard potentials. SIAM J Math Anal, 2020, 52: 2081–2097

    Article  MathSciNet  MATH  Google Scholar 

  63. Ukai S. Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J Appl Math, 1984, 1: 141–156

    Article  MathSciNet  MATH  Google Scholar 

  64. Villani C. Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev Mat Iberoam, 1999, 15: 335–352

    Article  MathSciNet  MATH  Google Scholar 

  65. Villani C. A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. 1. Amsterdam: North-Holland, 2002, 71–305

    MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11631011). The third author was supported by National Natural Science Foundation of China (Grant Nos. 11961160716, 11871054 and 11771342), the Natural Science Foundation of Hubei Province (Grant No. 2019CFA007) and the Fundamental Research Funds for the Central Universities (Grant No. 2042020kf0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Hu, X., Li, WX. et al. The Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Sci. China Math. 65, 443–470 (2022). https://doi.org/10.1007/s11425-021-1886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1886-9

Keywords

MSC(2020)

Navigation