Skip to main content
Log in

Existence for VT-harmonic maps from compact manifolds with boundary

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider a kind of generalized harmonic maps, namely, the VT-harmonic maps. We prove an existence theorem for the Dirichlet problem of VT-harmonic maps from compact manifolds with boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Q, Jost J, Qiu H B. On VT-harmonic maps. Ann Global Anal Geom, 2020, 57: 71–94

    Article  MathSciNet  Google Scholar 

  2. Chen Q, Jost J, Wang G F. A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl, and Finsler geometry. J Geom Anal, 2015, 25: 2407–2426

    Article  MathSciNet  Google Scholar 

  3. Eells J, Sampson J H. Harmonic mappings of Riemannian manifolds. Amer J Math, 1964, 86: 109–160

    Article  MathSciNet  Google Scholar 

  4. Gromoll D, Klingenberg W, Meyer W. Riemannsche Geometrie im Großen. Lecture Notes in Mathematics, vol. 55. Berlin-Heidelberg: Springer-Verlag, 2006

    MATH  Google Scholar 

  5. Hamilton R S. Harmonic Maps of Manifolds with Boundary. Berlin-Heidelberg: Springer, 1975

    Book  Google Scholar 

  6. Hildebrandt S, Kaul H, Widman K O. Harmonic mappings into Riemannian manifolds with non-positive sectional curvature. Math Scand, 1975, 37: 257–263

    Article  MathSciNet  Google Scholar 

  7. Hildebrandt S, Kaul H, Widman K O. Dirichlet’s boundary value problem for harmonic mappings of Riemannian manifolds. Math Z, 1976, 147: 225–236

    Article  MathSciNet  Google Scholar 

  8. Hildebrandt S, Kaul H, Widman K O. An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math, 1977, 138: 1–16

    Article  MathSciNet  Google Scholar 

  9. Jost J, Simsir F M. Affine harmonic maps. Analysis (Berlin), 2009, 29: 185–197

    MathSciNet  MATH  Google Scholar 

  10. Jost J, Yau S-T. A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math, 1993, 170: 221–254

    Article  MathSciNet  Google Scholar 

  11. Karcher H. Anwendungen der Alexandrowschen Winkelvergleichssätze. Manuscripta Math, 1970, 2: 77–102

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11971358). The second author thanks the Max-Planck Institute for Mathematics in the Sciences for good working conditions when part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, Q. Existence for VT-harmonic maps from compact manifolds with boundary. Sci. China Math. 65, 2371–2378 (2022). https://doi.org/10.1007/s11425-020-1941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1941-4

Keywords

MSC(2020)

Navigation