Skip to main content
Log in

Periodic solutions of a semilinear variable coefficient wave equation under asymptotic nonresonance conditions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the periodic solutions of a semilinear variable coefficient wave equation arising from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. The variable coefficient characterizes the inhomogeneity of media and its presence usually leads to the destruction of the compactness of the inverse of the linear wave operator with periodic-Dirichlet boundary conditions on its range. In the pioneering work of Barbu and Pavel (1997), they gave the existence and regularity of the periodic solution for Lipschitz, nonresonant and monotone nonlinearity under the assumption ηu > 0 (see Section 2 for its definition) on the coefficient u(x) and left the case ηu = 0 as an open problem. In this paper, by developing the invariant subspace method and using the complete reduction technique and Leray-Schauder theory, we obtain the existence of periodic solutions for such a problem when the nonlinear term satisfies the asymptotic nonresonance conditions. Our result needs neither requirements on the coefficient except the natural positivity assumption (i.e., u(x) > 0) nor the monotonicity assumption on the nonlinearity. In particular, when the nonlinear term is an odd function and satisfies the global nonresonance conditions, there is only one (trivial) solution to this problem in the invariant subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu V, Pavel N H. Periodic solutions to nonlinear one dimensional wave equation with x-dependent coefficients. Trans Amer Math Soc, 1997, 349: 2035–2048

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch T, Willem M. Periodic solutions of non-autonomous Hamiltonian systems with symmetries. J Reine Angew Math, 1994, 451: 149–159

    MathSciNet  MATH  Google Scholar 

  3. Ben-Naoum A K, Berkovits J. Nontrivial solutions for some semilinear problems and applications to wave equations on balls and spheres. Topol Methods Nonlinear Anal, 1995, 5: 177–192

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Naoum A K, Mawhin J. Periodic solutions of some semilinear wave equations on balls and on spheres. Topol Methods Nonlinear Anal, 1993, 1: 113–137

    Article  MathSciNet  MATH  Google Scholar 

  5. Berti M, Bolle P. Periodic solutions of nonlinear wave equations with general nonlinearities. Comm Math Phys, 2003, 243: 315–328

    Article  MathSciNet  MATH  Google Scholar 

  6. Berti M, Bolle P. Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Arch Ration Mech Anal, 2010, 195: 609–642

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis H, Coron J M. Periodic solutions of nonlinear wave equations and Hamiltonian systems. Amer J Math, 1981, 103: 559–570

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis H, Nirenberg L. Forced vibrations for a nonlinear wave equation. Comm Pure Appl Math, 1978, 31: 1–30

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang K, Wu S, Li S. Multiple periodic solutions for an asymptotically linear wave equation. Indiana Univ Math J, 1982, 31: 721–731

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen J. Periodic solutions to nonlinear wave equations with spatially dependent coefficients. Z Angew Math Phys, 2015, 66: 2095–2107

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen J, Zhang Z. Existence of infinitely many periodic solutions for the radially symmetric wave equation with resonance. J Differential Equations, 2016, 260: 6017–6037

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math, 1993, 46: 1409–1498

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding Y, Li S, Willem M. Periodic solutions of symmetric wave equations. J Differential Equations, 1998, 145: 217–241

    Article  MathSciNet  MATH  Google Scholar 

  14. Fokam J M. Multiplicity and regularity of large periodic solutions with rational frequency for a class of semilinear monotone wave equations. Proc Amer Math Soc, 2017, 145: 4283–4297

    Article  MathSciNet  MATH  Google Scholar 

  15. Fulton C T, Pruess S A. Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems. J Math Anal Appl, 1994, 188: 297–340

    Article  MathSciNet  MATH  Google Scholar 

  16. Ji S. Time periodic solutions to a nonlinear wave equation with x-dependent coefficients. Calc Var Partial Differential Equations, 2008, 32: 137–153

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji S. Periodic solutions for one dimensional wave equation with bounded nonlinearity. J Differential Equations, 2018, 264: 5527–5540

    Article  MathSciNet  MATH  Google Scholar 

  18. Ji S, Gao Y, Zhu W. Existence and multiplicity of periodic solutions for Dirichlet-Neumann boundary value problem of a variable coefficient wave equation. Adv Nonlinear Stud, 2016, 16: 765–773

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji S, Li Y. Periodic solutions to one-dimensional wave equation with x-dependent coefficients. J Differential Equations, 2006, 229: 466–493

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji S, Li Y. Time-periodic solutions to the one-dimensional wave equation with periodic or anti-periodic boundary conditions. Proc Roy Soc Edinburgh Sect A, 2007, 137: 349–371

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji S, Li Y. Time periodic solutions to the one-dimensional nonlinear wave equation. Arch Ration Mech Anal, 2011, 199: 435–451

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct Anal Appl, 1987, 21: 192–205

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma M, Ji S. Time periodic solutions of one-dimensional forced Kirchhoff equations with x-dependent coefficients. Proc R Soc A Math Phys Eng Sci, 2018, 474: 20170620

    MathSciNet  MATH  Google Scholar 

  24. Mawhin J. Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conference Series in Mathematics, vol. 40. Providence: Amer Math Soc, 1979

    MATH  Google Scholar 

  25. Mawhin J, Ward J. Asymptotic nonuniform nonresonance conditions in the periodic-Dirichlet problem for semi-linear wave equations. Ann Mat Pura Appl (4), 1983, 135: 85–97

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz P H. Periodic solutions of nonlinear hyperbolic partial differential equations. Comm Pure Appl Math, 1967, 20: 145–205

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabinowitz P H. Free vibrations for a semilinear wave equation. Comm Pure Appl Math, 1978, 31: 31–68

    Article  MathSciNet  MATH  Google Scholar 

  28. Rudakov I A. Periodic solutions of the wave equation with nonconstant coefficients and with homogeneous Dirichlet and Neumann boundary conditions. Differ Equ, 2016, 52: 248–257

    Article  MathSciNet  MATH  Google Scholar 

  29. Rudakov I A. Periodic solutions of the quasilinear equation of forced vibrations of an inhomogeneous string. Math Notes, 2017, 101: 137–148

    Article  MathSciNet  MATH  Google Scholar 

  30. Tanaka K. Infinitely many periodic solutions for the wave equation: uttuxx ± ∣u∣p−1u = f(x, t). II. Trans Amer Math Soc, 1988, 307: 615–645

    MathSciNet  MATH  Google Scholar 

  31. Tanaka M. Existence of multiple weak solutions for asymptotically linear wave equations. Nonlinear Anal, 2006, 65: 475–499

    Article  MathSciNet  MATH  Google Scholar 

  32. Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm Math Phys, 1990, 127: 479–528

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei H, Ji S. Existence of multiple periodic solutions for a semilinear wave equation in an n-dimensional ball. Adv Nonlinear Stud, 2019, 19: 529–544

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei H, Ji S. Infinitely many periodic solutions for a semilinear wave equation with x-dependent coefficients. ESAIM Control Optim Calc Var, 2020, 26: 7

    Article  MathSciNet  MATH  Google Scholar 

  35. Wei H, Ji S. Existence of multiple periodic solutions to a semilinear wave equation with x-dependent coefficients. Proc Roy Soc Edinburgh Sect A, 2020, 150: 2586–2606

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12071065 and 11871140). The authors sincerely thank the anonymous referees for very careful reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguan Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Ji, S. Periodic solutions of a semilinear variable coefficient wave equation under asymptotic nonresonance conditions. Sci. China Math. 66, 79–90 (2023). https://doi.org/10.1007/s11425-020-1900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1900-5

Keywords

MSC(2020)

Navigation