Skip to main content
Log in

The qualitative behavior for approximate Dirac-harmonic maps into stationary Lorentzian manifolds

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For a sequence of approximate Dirac-harmonic maps from a closed spin Riemann surface into a stationary Lorentzian manifold with uniformly bounded energy, we study the blow-up analysis and show that the Lorentzian energy identity holds. Moreover, when the targets are static Lorentzian manifolds, we prove the positive energy identity and the no neck property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai W, Zhu M. Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds. J Funct Anal, 2020, 279: 108633

    Article  MathSciNet  Google Scholar 

  2. Albertsson C, Lindström U, Zabzine M. N = 1 supersymmetric sigma model with boundaries, I. Comm Math Phys, 2003, 233: 403–421

    Article  MathSciNet  Google Scholar 

  3. Balinsky A A, Evans W D. Some recent results on Hardy-type inequalities. Appl Math Inf Sci, 2010, 4: 191–208

    MathSciNet  MATH  Google Scholar 

  4. Bryant R L. A duality theorem for Willmore surfaces. J Differential Geom, 1984, 20: 23–53

    Article  MathSciNet  Google Scholar 

  5. Chen J, Li Y. Homotopy classes of harmonic maps of the stratified 2-spheres and applications to geometric flows. Adv Math, 2014, 263: 357–388

    Article  MathSciNet  Google Scholar 

  6. Chen Q, Jost J, Li J, et al. Regularity theorems and energy identities for Dirac-harmonic maps. Math Z, 2005, 251: 61–84

    Article  MathSciNet  Google Scholar 

  7. Chen Q, Jost J, Li J, et al. Dirac-harmonic maps. Math Z, 2006, 254: 409–432

    Article  MathSciNet  Google Scholar 

  8. Clarke C J S. On the global isometric embedding of pseudo-Riemannian manifolds. Proc R Soc Lond A Math Phys Sci, 1970, 314: 417–428

    MathSciNet  MATH  Google Scholar 

  9. Deligne P, Etingof P, Freed D S, et al. Quantum Fields and Strings: A Course for Mathematicians. Providence: Amer Math Soc, 1999

    Google Scholar 

  10. Ding W, Tian G. Energy identity for a class of approximate harmonic maps from surfaces. Comm Anal Geom, 1995, 3: 543–554

    Article  MathSciNet  Google Scholar 

  11. Gromov M. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307–347

    Article  MathSciNet  Google Scholar 

  12. Han X, Jost J, Liu L, et al. Bubbling analysis for approximate Lorentzian harmonic maps from Riemann surfaces. Calc Var Partial Differential Equations, 2017, 56: 175

    Article  MathSciNet  Google Scholar 

  13. Han X, Zhao L, Zhu M. Energy identity for harmonic maps into standard stationary Lorentzian manifolds. J Geom Phys, 2017, 114: 621–630

    Article  MathSciNet  Google Scholar 

  14. Isobe T. Regularity of harmonic maps into a static Lorentzian manifold. J Geom Anal, 1998, 8: 447–463

    Article  MathSciNet  Google Scholar 

  15. Jost J. Two-Dimensional Geometric Variational Problems. Chichester: John Wiley & Sons, 1991

    MATH  Google Scholar 

  16. Jost J. Geometry and Physics. Berlin: Springer-Verlag, 2009

    Book  Google Scholar 

  17. Jost J, Liu L, Zhu M. Geometric analysis of the action functional of the nonlinear supersymmetric sigma model. Leipzig: Max Planck Institute for Mathematics in the Sciences, https://www.mis.mpg.de/preprints/2015/preprint2015_77.pdf, 2015

    Google Scholar 

  18. Jost J, Liu L, Zhu M. Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow. Calc Var Partial Differential Equations, 2017, 56: 108

    Article  MathSciNet  Google Scholar 

  19. Jost J, Wu R, Zhu M. Energy quantization for a nonlinear sigma model with critical gravitinos. Trans Amer Math Soc Ser B, 2019, 6: 215–244

    Article  MathSciNet  Google Scholar 

  20. Kramer D, Stephani H, Herlt E, et al. Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics. Cambridge-New York: Cambridge University Press, 1980

    MATH  Google Scholar 

  21. Lawson H BJr, Michelsohn M L. Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton: Princeton University Press, 1989

    MATH  Google Scholar 

  22. Li J, Liu L. Partial regularity of harmonic maps from a Riemannian manifold into a Lorentzian manifold. Pacific J Math, 2019, 299: 33–52

    Article  MathSciNet  Google Scholar 

  23. Li J, Zhu X. Small energy compactness for approximate harmonic mappings. Commun Contemp Math, 2011, 13: 741–763

    Article  MathSciNet  Google Scholar 

  24. Li J, Zhu X. Energy identity for the maps from a surface with tension field bounded in Lp. Pacific J Math, 2012, 260: 181–195

    Article  MathSciNet  Google Scholar 

  25. Li Y, Wang Y. A weak energy identity and the length of necks for a sequence of Sacks-Uhlenbeck α-harmonic maps. Adv Math, 2010, 225: 1134–1184

    Article  MathSciNet  Google Scholar 

  26. Lin F, Wang C. Energy identity of harmonic map flows from surfaces at finite singular time. Calc Var Partial Differential Equations, 1998, 6: 369–380

    Article  MathSciNet  Google Scholar 

  27. Liu L. No neck for Dirac-harmonic maps. Calc Var Partial Differential Equations, 2015, 52: 1–15

    Article  MathSciNet  Google Scholar 

  28. Maldacena J. The large-N limit of superconformal field theories and supergravity. Internat J Theoret Phys, 1999, 38: 1113–1133

    Article  MathSciNet  Google Scholar 

  29. Meyers N G. An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann Sc Norm Super Pisa Cl Sci (3), 1963, 17: 189–206

    MATH  Google Scholar 

  30. O’Neill B. Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics, vol. 103. New York: Academic Press, 1983

    MATH  Google Scholar 

  31. Parker T H. Bubble tree convergence for harmonic maps. J Differential Geom, 1996, 44: 595–633

    Article  MathSciNet  Google Scholar 

  32. Parker T H, Wolfson J G. Pseudo-holomorphic maps and bubble trees. J Geom Anal, 1993, 3: 63–98

    Article  MathSciNet  Google Scholar 

  33. Qing J, Tian G. Bubbling of the heat flows for harmonic maps from surfaces. Comm Pure Appl Math, 1997, 50: 295–310

    Article  MathSciNet  Google Scholar 

  34. Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheres. Ann of Math (2), 1981, 113: 1–24

    Article  MathSciNet  Google Scholar 

  35. Simon L. Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann of Math (2), 1983, 118: 525–571

    Article  MathSciNet  Google Scholar 

  36. Wang C. Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets. Houston J Math, 1996, 22: 559–590

    MathSciNet  MATH  Google Scholar 

  37. Wang W, Wei D, Zhang Z. Energy identity for approximate harmonic maps from surfaces to general targets. J Funct Anal, 2017, 272: 776–803

    Article  MathSciNet  Google Scholar 

  38. Ye R. Gromov’s compactness theorem for pseudo holomorphic curves. Trans Amer Math Soc, 1994, 342: 671–694

    MathSciNet  MATH  Google Scholar 

  39. Zhao L. Energy identities for Dirac-harmonic maps. Calc Var Partial Differential Equations, 2007, 28: 121–138

    Article  MathSciNet  Google Scholar 

  40. Zhu M. Regularity for harmonic maps into certain pseudo-Riemannian manifolds. J Math Pures Appl (9), 2013, 99: 106–123

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Fundamental Research Funds for the Central Universities (Grant No. SWU119064). The second author was supported by Shanghai Frontier Research Institute for Modern Analysis (IMA-Shanghai) and Innovation Program of Shanghai Municipal Education Commission (Grant No. 2021-01-07-00-02-E00087). Part of this work was carried out when the first author was a postdoc at the School of Mathematical Sciences, Shanghai Jiao Tong University and later when he was visiting the School of Mathematical Sciences, Shanghai Jiao Tong University. The first author thanks the institution for hospitality and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaomiao Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W., Zhu, M. The qualitative behavior for approximate Dirac-harmonic maps into stationary Lorentzian manifolds. Sci. China Math. 65, 1679–1706 (2022). https://doi.org/10.1007/s11425-020-1895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1895-7

Keywords

MSC(2020)

Navigation