Skip to main content
Log in

A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions. The symmetric stress σ = −∇2u is sought in the Sobolev space H(divdiv, Ω; \(\mathbb{S}\)) simultaneously with the displacement u in L2(Ω). By stemming from the structure of H(div, Ω; \(\mathbb{S}\)) conforming elements for the linear elasticity problems proposed by Hu and Zhang (2014), the H(divdiv, Ω; \(\mathbb{S}\)) conforming finite element spaces are constructed by imposing the normal continuity of divσ on the H (div, Ω; \(\mathbb{S}\)) conforming spaces of Pk symmetric tensors. The inheritance makes the basis functions easy to compute. The discrete spaces for u are composed of the piecewise Pk−2 polynomials without requiring any continuity. Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for k ⩾ 3, and the optimal order of convergence is achieved. Besides, the superconvergence and the postprocessing results are displayed. Some numerical experiments are provided to demonstrate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adini A, Clough R. Analysis of Plate Bending by the Finite Element Method. https://books.google.com.sg/books/about/Analysi_of_Plate_Bending_by_the_Finite.html?id=0qrsHAAACAAJ&redir_esc=y, 1960

  2. Argyris J, Fried I, Scharpf D. The TUBA family of elements for the matrix displacement method. J Roy Aero Soc, 1968, 72: 514–517

    Google Scholar 

  3. Arnold D N, Awanou G, Winther R. Finite elements for symmetric tensors in three dimensions. Math Comp, 2008, 77: 1229–1251

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold D N, Falk R S, Winther R. Differential complexes and stability of finite element methods II: The elasticity complex. In: Compatible Spatial Discretizations. The IMA Volumes in Mathematics and Its Applications, vol. 142. New York: Springer, 2006, 47–67

    Chapter  Google Scholar 

  5. Arnold D N, Falk R S, Winther R. Finite element exterior calculus, homological techniques, and applications. Acta Numer, 2006, 15: 1–155

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold D N, Falk R S, Winther R. Finite element exterior calculus: From Hodge theory to numerical stability. Bull Amer Math Soc NS, 2010, 47: 281–354

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold D N, Hu K. Complexes from complexes. Found Comput Math, 2021, in press

  8. Arnold D N, Winther R. Mixed finite elements for elasticity. Numer Math, 2002, 92: 401–419

    Article  MathSciNet  MATH  Google Scholar 

  9. Behrens E M, Guzmán J. A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J Numer Anal, 2011, 49: 789–817

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernšteǐn I N, Gelfand I M, Gelfand S I. Differential operators on the base affine space and a study of g-modules. In: Proceedings of Summer School of Bolyai János Mathematical Society. Lie Groups and Their Representations. New York: Wiley, 1975, 21–64

    Google Scholar 

  11. Boffi D, Brezzi F, Fortin M. Mixed Finite Element Methods and Applications. Heidelberg: Springer, 2013

    Book  MATH  Google Scholar 

  12. Brenner S C, Gudi T, Sung L Y. A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron Trans Numer Anal, 2010, 37: 214–238

    MathSciNet  MATH  Google Scholar 

  13. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. New York: Springer-Verlag, 1991

    MATH  Google Scholar 

  14. Chen H, Chen S, Qiao Z. C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer Math, 2013, 124: 99–119

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen L, Huang X. Finite elements for divdiv-conforming symmetric tensors. arXiv:2005.01271, 2020

  16. Chen L, Huang X. Finite elements for divdiv-conforming symmetric tensors in three dimensions. arxiv:2007.12399, 2020

  17. Christiansen S H, Hu J, Hu K. Nodal finite element de Rham complexes. Numer Math, 2018, 139: 411–446

    Article  MathSciNet  MATH  Google Scholar 

  18. Christiansen S H, Hu K. Finite element systems for vector bundles: Elasticity and curvature. arXiv:1906.09128, 2020

  19. Christiansen S H, Hu K, Sande E. Poincaré path integrals for elasticity. J Math Pures Appl (9), 2020, 135: 83–102

    Article  MathSciNet  MATH  Google Scholar 

  20. Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978

    MATH  Google Scholar 

  21. Ciarlet P G, Raviart P A. A mixed finite element method for the biharmonic equation. In: Proceedings of a Symposium Conducted by the Mathematics Research Center of the University of Wisconsin-Madison. Mathematical Aspects of Finite Elements In Partial Differential Equations. Amsterdam: Academic Press, 1974, 125–145

    Google Scholar 

  22. Douglas J Jr, Dupont T, Percell P, et al. A family of C1 finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal Numér, 1979, 13: 227–255

    Article  MathSciNet  MATH  Google Scholar 

  23. Fraeijs De Veubeke B. Variational principles and the patch test. Internat J Numer Methods Engrg, 1974, 8: 783–801

    Article  MathSciNet  MATH  Google Scholar 

  24. Führer T, Heuer N. Fully discrete DPG methods for the Kirchhoff-Love plate bending model. Comput Methods Appl Mech Engrg, 2019, 343: 550–571

    Article  MathSciNet  MATH  Google Scholar 

  25. Führer T, Heuer N, Niemi A H. An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation. Math Comp, 2019, 88: 1587–1619

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao B, Zhang S, Wang M. A note on the nonconforming finite elements for elliptic problems. J Comput Math, 2011, 29: 215–226

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerasimov T, Stylianou A, Sweers G. Corners give problems when decoupling fourth order equations into second order systems. SIAM J Numer Anal, 2012, 50: 1604–1623

    Article  MathSciNet  MATH  Google Scholar 

  28. Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations. Berlin: Springer-Verlag, 1986

    Book  MATH  Google Scholar 

  29. Guzmán J, Leykekhman D, Neilan M. A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo, 2012, 49: 95–125

    Article  MathSciNet  MATH  Google Scholar 

  30. Herrmann L. Finite element bending analysis for plates. J Engrg Mech Div, 1967, 93: 13–26

    Article  Google Scholar 

  31. Hu J. Finite element approximations of symmetric tensors on simplicial grids in ℝn: The higher order case. J Comput Math, 2015, 33: 283–296

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu J, Huang Y, Zhang S. The lowest order differentiable finite element on rectangular grids. SIAM J Numer Anal, 2011, 49: 1350–1368

    Article  MathSciNet  MATH  Google Scholar 

  33. Hu J, Tian S, Zhang S. A family of 3D H2-nonconforming tetrahedral finite elements for the biharmonic equation. Sci China Math, 2020, 63: 1505–1522

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu J, Zhang S. A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv:1406.7457, 2014

  35. Hu J, Zhang S. A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci China Math, 2015, 58: 297–307

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu J, Zhang S. The minimal conforming Hk finite element spaces on Rn rectangular grids. Math Comp, 2015, 84: 563–579

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu J, Zhang S. An error analysis method SPP-BEAM and a construction guideline of nonconforming finite elements for fourth order elliptic problems. J Comput Math, 2020, 38: 195–222

    Article  MathSciNet  MATH  Google Scholar 

  38. Johnson C. On the convergence of a mixed finite-element method for plate bending problems. Numer Math, 1973, 21: 43–62

    Article  MathSciNet  MATH  Google Scholar 

  39. Lascaux P, Lesaint P. Some nonconforming finite elements for the plate bending problem. Rev Française Autom Inform Rech Opér Sér Rouge Anal Numér, 1975, 9: 9–53

    MathSciNet  MATH  Google Scholar 

  40. Miyoshi T. A finite element method for the solutions of fourth order partial differential equations. Kumamoto J Sci Math, 1972, 9: 87–116

    MathSciNet  MATH  Google Scholar 

  41. Morley L S D. A triangular equilibrium element with linearly varying bending moments for plate bending problems. Aeronautical J, 1967, 71: 715–719

    Article  Google Scholar 

  42. Powell M J D, Sabin M A. Piecewise quadratic approximations on triangles. ACM Trans Math Software, 1977, 3: 316–325

    Article  MathSciNet  MATH  Google Scholar 

  43. Shi Z, Wang M. Finite Element Methods. Beijing: Science Press, 2013

    Google Scholar 

  44. Veubeke B F D. A conforming finite element for plate bending. Internat J Solids Structures, 1968, 4: 95–108

    Article  MATH  Google Scholar 

  45. Wang M, Shi Z, Xu J. A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer Math, 2007, 106: 335–347

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang M, Zu P, Zhang S. High accuracy nonconforming finite elements for fourth order problems. Sci China Math, 2012, 55: 2183–2192

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang X. Non-standard finite element methods for the thin structure. PhD Thesis. Beijing: Peking University, 2017

    Google Scholar 

  48. Ženíšek A. Polynomial approximation on tetrahedrons in the finite element method. J Approx Theory, 1973, 7: 334–351

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang S. A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl Numer Math, 2009, 59: 219–233

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang S, Zhang Z. Invalidity of decoupling a biharmonic equation to two Poisson equations on non-convex polygons. Int J Numer Anal Model, 2008, 5: 73–76

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11625101 and 11421101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Ma, R. & Zhang, M. A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids. Sci. China Math. 64, 2793–2816 (2021). https://doi.org/10.1007/s11425-020-1883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1883-9

Keywords

MSC(2020)

Navigation