Skip to main content
Log in

The Minkowski norm and Hessian isometry induced by an isoparametric foliation on the unit sphere

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let Mt be an isoparametric foliation on the unit sphere (Sn−1(1), gst) with d principal curvatures. Using the spherical coordinates induced by Mt, we construct a Minkowski norm with the representation \(F = r\sqrt {2f(t)} \), which generalizes the notions of (α, β)-norm and (α1, α2)-norm. Using the technique of the spherical local frame, we give an exact and explicit answer to the question when \(F = r\sqrt {2f(t)} \) really defines a Minkowski norm. Using the similar technique, we study the Hessian isometry Φ between two Minkowski norms induced by Mt, which preserves the orientation and fixes the spherical ξ-coordinates. There are two ways to describe this Φ, either by a system of ODEs, or by its restriction to any normal plane for Mt, which is then reduced to a Hessian isometry between Minkowski norms on ℝ2 satisfying certain symmetry and (d)-properties. When d > 2, we prove that this Φ can be obtained by gluing positive scalar multiplications and compositions of the Legendre transformation and positive scalar multiplications, so it must satisfy the (d)-property for any orthogonal decomposition ℝn = V′ + V″, i.e., for any nonzero x = x′ + x″ and \(\Phi (x) = \bar x = \bar x\prime + \bar x\prime \prime \) with \(x\prime ,\bar x\prime \in {\bf{V}}\prime \) and x″, \(x\prime \prime ,\bar x\prime \prime \in {\bf{V}}\prime \prime \), we have \(g_x^{{F_1}}(x\prime \prime ,x) = g_{\bar x}^{{F_2}}(\bar x\prime \prime ,\bar x)\). As byproducts, we prove the following results. On the indicatrix (SF, g), where F is a Minkowski norm induced by Mt and g is the Hessian metric, the foliation Nt = SF ∩ ℝ>0M0 is isoparametric. Laugwitz Conjecture is valid for a Minkowski norm F induced by Mt, i.e., if its Hessian metric g is flat on ℝn{0} with n > 2, then F is Euclidean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch U. Isoparametric hypersurfaces with four or six distinct principal curvatures. Math Ann, 1983, 264: 283–302

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao D, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. New York: Springer-Verlag, 2000

    Book  MATH  Google Scholar 

  3. Berwald L. Über Finslersche und Cartansche Geometrie. I. Geometrische Erkiürungen der Krümmung und des Hauptskalars eines zweidimensionalen Finslerschen Raumes. Mathematica, 1941, 17: 34–58

    MathSciNet  MATH  Google Scholar 

  4. Brickell F. A theorem on homogeneous functions. J Lond Math Soc (2), 1967, 42: 325–329

    Article  MathSciNet  MATH  Google Scholar 

  5. Cartan E. Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann Mat Pura Appl (4), 1938, 17: 177–191

    Article  MathSciNet  MATH  Google Scholar 

  6. Cartan E. Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math Z, 1939, 45: 335–367

    Article  MathSciNet  MATH  Google Scholar 

  7. Cartan E. Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5et à 9 dimensions. Univ Nac Tucumán Revista A, 1940, 1: 5–22

    MathSciNet  MATH  Google Scholar 

  8. Cecil T E, Chi Q S, Jensen G R. Isoparametric hypersurfaces with four principal curvatures. Ann of Math (2), 2007, 166: 1–76

    Article  MathSciNet  MATH  Google Scholar 

  9. Cecil T E, Ryan P J. Geometry of Hypersurfaces. New York: Springer-Verlag, 2015

    Book  MATH  Google Scholar 

  10. Chern S S, Shen Z. Riemann-Finsler Geometry. Singapore: World Scientific, 2005

    Book  MATH  Google Scholar 

  11. Chi Q S. Isoparametric hypersurfaces with four principal curvatures, II. Nagoya Math J, 2011, 204: 1–18

    Article  MathSciNet  MATH  Google Scholar 

  12. Chi Q S. Isoparametric hypersurfaces with four principal curvatures, III. J Differential Geom, 2013, 94: 469–504

    Article  MathSciNet  MATH  Google Scholar 

  13. Chi Q S. Isoparametric hypersurfaces with four principal curvatures, IV. J Differential Geom, 2020, 115: 225–301

    Article  MathSciNet  MATH  Google Scholar 

  14. Crampin M. Finsler spaces of (α, β) type and semi-C-reducibility. Publ Math Debrecen, 2021, 98: 419–454

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng S, Xu M. (α1, α2)-metrics and Clifford-Wolf homogeneity. J Geom Anal, 2016, 26: 2282–2321

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorfmeister J, Neher E. Isoparametric hypersurfaces, case g = 6, m =1. Comm Algebra, 1985, 13: 2299–2368

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang F Q. Dual submanifolds in rational homology spheres. Sci China Math, 2017, 60: 1549–1560

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferus D, Karcher H, Münzner H F. Cliffordalgebren und neue isoparametrische Hyperflächen. Math Z, 1981, 177: 479–502

    Article  MathSciNet  MATH  Google Scholar 

  19. Ge J Q. Isoparametric foliations, diffeomorphism groups and exotic smooth structures. Adv Math, 2016, 302: 851–868

    Article  MathSciNet  MATH  Google Scholar 

  20. Ge J Q. Problems related to isoparametric theory. arXiv:1910.12229, 2019

  21. Ge J Q, Qian C. Finiteness results for equifocal hypersurfaces in compact symmetric spaces. Sci China Math, 2014, 57: 1975–1982

    Article  MathSciNet  MATH  Google Scholar 

  22. Ge J Q, Tang Z Z. Chern conjecture and isoparametric hypersurfaces. In: Differential Geometry. Advanced Lectures in Mathematics, vol. 22. Somerville: International Press, 2012, 49–60

    Google Scholar 

  23. Gelfand I M, Dorfman I J. Hamiltonian operators and algebraic structures associated with them. Funktsional Anal i Prilozhen, 1979, 13: 13–30

    MathSciNet  Google Scholar 

  24. He Q, Dong P L, Yin S T. Classifications of isoparametric hypersurfaces in Randers space forms. Acta Math Sin Engl Ser, 2020, 36: 1049–1060

    Article  MathSciNet  MATH  Google Scholar 

  25. He Q, Yin S T, Shen Y B. Isoparametric hypersurfaces in Minkowski spaces. Differential Geom Appl, 2016, 47: 133–158

    Article  MathSciNet  MATH  Google Scholar 

  26. He Q, Yin S T, Shen Y B. Isoparametric hypersurfaces in Funk spaces. Sci China Math, 2017, 60: 2447–2464

    Article  MathSciNet  MATH  Google Scholar 

  27. Hsiang W Y, Lawson H B. Minimal submanifolds with low cohomogeneity. J Differential Geom, 1971, 5: 1–38

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang L B, Mo X H. Homogeneous Einstein Finsler metrics on (4n + 3)-dimensional spheres. Canad Math Bull, 2019, 62: 509–523

    Article  MathSciNet  MATH  Google Scholar 

  29. Laugwitz D. Differentialgeometrie in Vektorräumen, unter besonderer Berücksichtigung der unendlichdimensionalen Räume. Braunschweig: Vieweg, 1965

    MATH  Google Scholar 

  30. Li A M, Simon U, Zhao G S. Global Affine Differential Geometry of Hypersurfaces. De Gruyter Expositions in Mathematics, vol. 11. Berlin: De Gruyter, 1993

    Book  MATH  Google Scholar 

  31. Ma H, Ohnita Y. Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, I. J Differential Geom, 2014, 97: 275–348

    Article  MathSciNet  MATH  Google Scholar 

  32. Matsumoto M. Theory of Finsler spaces with (α, β)-metrics. Rep Math Phys, 1992, 31: 43–83

    Article  MathSciNet  Google Scholar 

  33. Matsumoto M. Remarks on Berwald and Landsberg spaces. In: Finsler Geometry. Contemporary Mathematics, vol. 196. Providence: Amer Math Soc, 1996, 79–82

    MATH  Google Scholar 

  34. Miyaoka R. Isoparametric hypersurfaces with (g, m) = (6, 2). Ann of Math (2), 2013, 177: 53–110. Errata of “Isoparametric hypersurfaces with (g, m) = (6, 2)”. Ann of Math (2), 2016, 183: 1057–1071

    Article  MathSciNet  MATH  Google Scholar 

  35. Münzner H F. Isoparametrische Hyperflächen in Sphären. Math Ann, 1980, 251: 57–71

    Article  MathSciNet  MATH  Google Scholar 

  36. Münzner H F. Isoparametrische Hyperflächen in Sphären. II. Über die Zerlegung der Sphäre in Ballbündel. Math Ann, 1981, 256: 215–232

    Article  MathSciNet  MATH  Google Scholar 

  37. Ozeki H, Takeuchi M. On some types of isoparametric hypersurfaces in spheres, I. Tohoku Math J, 1975, 27: 515–559

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozeki H, Takeuchi M. On some types of isoparametric hypersurfaces in spheres, II. Tohoku Math J, 1976, 28: 7–55

    Article  MathSciNet  MATH  Google Scholar 

  39. Qian C, Tang Z Z. Recent progress in isoparametric functions and isoparametric hypersurfaces. In: Real and Complex Submanifolds. Springer Proceedings in Mathematics and Statistics Book Series, vol. 106. Tokyo: Springer, 2014, 65–76

    Chapter  Google Scholar 

  40. Qian C, Tang Z Z. Isoparametric functions on exotic spheres. Adv Math, 2015, 272: 611–629

    Article  MathSciNet  MATH  Google Scholar 

  41. Schneider R. Über die Finslerraume mit Sijkl = 0. Arch Math Basel, 1968, 19: 656–658

    Article  MathSciNet  Google Scholar 

  42. Schneider R. Convex Bodies: The Brunn-Minkowski Theory, 2nd ed. Cambridge: Cambridge University Press, 2013

    Book  MATH  Google Scholar 

  43. Shen Z. Lectures on Finsler Geometry. Singapore: World Scientific, 2001

    Book  MATH  Google Scholar 

  44. Shen Z. Some open problems in Finsler geometry. https://www.math.iupui.edu/~zshen/Research/papers/Problem.pdf, 2009

  45. Shima H. The Geometry of Hessian Structures. Singapore: World Scientific, 2007

    Book  MATH  Google Scholar 

  46. Shima H. Geometry of Hessian structures. In: Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085. Heidelberg: Springer, 2013, 37–55

    Chapter  MATH  Google Scholar 

  47. Stolz S. Multiplicities of Dupin hypersurfaces. Invent Math, 1999, 138: 253–279

    Article  MathSciNet  MATH  Google Scholar 

  48. Straume E. Compact connected Lie transformation groups on spheres with low cohomogeneity, I. Mem Amer Math Soc, 1996, 119: 1–93

    MathSciNet  MATH  Google Scholar 

  49. Takagi R, Takahashi T. On the principal curvatures of homogeneous hypersurfaces in a sphere. In: Differential Geometry in Honor of Kentaro Yano. Tokyo: Kinokuniya Book-store Company, 1972, 469–481

    Google Scholar 

  50. Tang Z Z. Isoparametric hypersurfaces with four distinct principal curvatures. Chin Sci Bull, 1991, 36: 1237–1240

    MathSciNet  MATH  Google Scholar 

  51. Tang Z Z. Multiplicities of equifocal hypersurfaces in symmetric spaces. Asian J Math, 1998, 2: 181–214

    Article  MathSciNet  MATH  Google Scholar 

  52. Tang Z Z, Xie Y Q, Yan W J. Isoparametric foliation and Yau conjecture on the first eigenvalue, II. J Funct Anal, 2014, 266: 6174–6199

    Article  MathSciNet  MATH  Google Scholar 

  53. Tang Z Z, Yan W J. Isoparametric foliation and Yau conjecture on the first eigenvalue. J Differential Geom, 2013, 94: 521–540

    Article  MathSciNet  MATH  Google Scholar 

  54. Tang Z Z, Yan W J. Isoparametric theory and its applications. In: Surveys in Geometric Analysis. Beijing: Science Press, 2018, 151–167

    Google Scholar 

  55. Terng C L, Thorbergsson G. Submanifold geometry in symmetric spaces. J Differential Geom, 1995, 42: 665–718

    Article  MathSciNet  MATH  Google Scholar 

  56. Thorbergsson G. A survey on isoparametric hypersurfaces and their generalizations. In: Handbook of Differential Geometry, vol. 1. Amsterdan: North-Holland, 2000, 963–995

    Google Scholar 

  57. Xu M. Isoparametric hypersurfaces in a Randers sphere of constant flag curvature. Ann Mat Pura Appl (4), 2018, 197: 703–720

    Article  MathSciNet  MATH  Google Scholar 

  58. Xu M, Matveev V S. Proof of Laugwitz Conjecture and Landsberg Unicorn Conjecture for Minkowski norms with SO(k) × SO(nk)-symmetry. Canad J Math, 2021, in press

  59. Xu M, Matveev V S, Yan K, et al. Some geometric correspondences for homothetic navigation. Publ Math Debrecen, 2020, 97: 449–474

    Article  MathSciNet  MATH  Google Scholar 

  60. Yau S T. Problem section. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102. Princeton: Princeton University Press, 1982, 669–706

    Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Grant No. Z180004), National Natural Science Foundation of China (Grant Nos. 11771331 and 11821101) and Capacity Building for Sci-Tech Innovation—Fundamental Scientific Research Funds (Grant No. KM201910028021). The author sincerely thanks Vladimir S. Matveev for the precious discussion which inspired this work and supplied the most crucial techniques. The author also thanks Zizhou Tang, Jianquan Ge and Wenjiao Yan for their helpful suggestions. The author thanks the reviewers for their precious advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M. The Minkowski norm and Hessian isometry induced by an isoparametric foliation on the unit sphere. Sci. China Math. 65, 1485–1516 (2022). https://doi.org/10.1007/s11425-020-1871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1871-9

Keywords

MSC(2020)

Navigation