Skip to main content
Log in

Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we construct efficient schemes based on the scalar auxiliary variable block-centered finite difference method for the modified phase field crystal equation, which is a sixth-order nonlinear damped wave equation. The schemes are linear, conserve mass and unconditionally dissipate a pseudo energy. We prove rigorously second-order error estimates in both time and space for the phase field variable in discrete norms. We also present some numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskaran A, Hu Z Z, Lowengrub J S, et al. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J Comput Phys, 2013, 250: 270–292

    Article  MathSciNet  Google Scholar 

  2. Baskaran A, Lowengrub J S, Wang C, et al. Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J Numer Anal, 2013, 51: 2851–2873

    Article  MathSciNet  Google Scholar 

  3. Elder K R, Grant M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys Rev E (3), 2004, 70: 051605

    Article  Google Scholar 

  4. Elder K R, Katakowski M, Haataja M, et al. Modeling elasticity in crystal growth. Phys Rev Lett, 2002, 88: 245701

    Article  Google Scholar 

  5. Gomez H, Nogueira X. An unconditionally energy-stable method for the phase field crystal equation. Comput Methods Appl Mech Engrg, 2012, 249: 52–61

    Article  MathSciNet  Google Scholar 

  6. Guo R H, Xu Y. Local discontinuous Galerkin method and high order semi-implicit scheme for the phase field crystal equation. SIAM J Sci Comput, 2016, 38: A105–A127

    Article  MathSciNet  Google Scholar 

  7. Guo R H, Xu Y. A high order adaptive time-stepping strategy and local discontinuous Galerkin method for the modified phase field crystal equation. Commun Comput Phys, 2018, 24: 123–151

    Article  MathSciNet  Google Scholar 

  8. Li Q, Mei L Q, Yang X F, et al. Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv Comput Math, 2019, 45: 1551–1580

    Article  MathSciNet  Google Scholar 

  9. Li X L, Rui H X. Block-centered finite difference method for simulating compressible wormhole propagation. J Sci Comput, 2018, 74: 1115–1145

    Article  MathSciNet  Google Scholar 

  10. Li X L, Shen J. Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv Comput Math, 2020, 46: 48

    Article  MathSciNet  Google Scholar 

  11. Li X L, Shen J, Rui H X. Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math Comp, 2019, 88: 2047–2068

    Article  MathSciNet  Google Scholar 

  12. Li Y B, Kim J. An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation. Comput Methods Appl Mech Engrg, 2017, 319: 194–216

    Article  MathSciNet  Google Scholar 

  13. Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys, 2018, 353: 407–416

    Article  MathSciNet  Google Scholar 

  14. Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474–506

    Article  MathSciNet  Google Scholar 

  15. Stefanovic P, Haataja M, Provatas N. Phase-field crystals with elastic interactions. Phys Rev Lett, 2006, 96: 225504

    Article  Google Scholar 

  16. Wang C, Wise S M. Global smooth solutions of the three-dimensional modified phase field crystal equation. Methods Appl Anal, 2010, 17: 191–212

    Article  MathSciNet  Google Scholar 

  17. Wang C, Wise S M. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J Numer Anal, 2011, 49: 945–969

    Article  MathSciNet  Google Scholar 

  18. Wise S M, Wang C, Lowengrub J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J Numer Anal, 2009, 47: 2269–2288

    Article  MathSciNet  Google Scholar 

  19. Yang X F, Han D Z. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J Comput Phys, 2017, 330: 1116–1134

    Article  MathSciNet  Google Scholar 

  20. Zhang Z R, Ma Y, Qiao Z H. An adaptive time-stepping strategy for solving the phase field crystal model. J Comput Phys, 2013, 249: 204–215

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11901489 and 11971407). The second author was supported by National Science Foundation of USA (Grant No. DMS-1720442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shen, J. Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. Sci. China Math. 65, 2201–2218 (2022). https://doi.org/10.1007/s11425-020-1867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1867-8

Keywords

MSC(2020)

Navigation