Skip to main content
Log in

Equivariant eta forms and equivariant differential K-theory

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, for a compact Lie group action, we prove the anomaly formula and the functoriality of the equivariant Bismut-Cheeger eta forms with perturbation operators when the equivariant family index vanishes. In order to prove them, we extend the Melrose-Piazza spectral section and its main properties to the equivariant case and introduce the equivariant version of the Dai-Zhang higher spectral flow for arbitrary-dimensional fibers. Using these results, we construct a new analytic model of the equivariant differential K-theory for compact manifolds when the group action has finite stabilizers only, which modifies the Bunke-Schick model of the differential K-theory. This model could also be regarded as an analytic model of the differential K-theory for compact orbifolds. Especially, we answer a question proposed by Bunke and Schick (2009) about the well-definedness of the push-forward map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem A, Leida J, Ruan Y. Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics, vol. 171. Cambridge: Cambridge University Press, 2007

    Book  MATH  Google Scholar 

  2. Atiyah M F, Anderson D W. K-Theory, 2nd ed. Advanced Book Classics. Redwood City: Addison-Wesley, 1989

    Google Scholar 

  3. Atiyah M F, Segal G. Twisted K-theory. Ukr Mat Visn, 2004, 1: 287–330; translation in Ukr Math Bull, 2004, 1: 291–334

    MathSciNet  MATH  Google Scholar 

  4. Atiyah M F, Singer I M. Index theory for skew-adjoint Fredholm operators. Publ Math Inst Hautes Études Sci, 1969, 37: 5–26

    Article  MathSciNet  MATH  Google Scholar 

  5. Atiyah M F, Singer I M. The index of elliptic operators: IV. Ann of Math (2), 1971, 93: 119–138

    Article  MathSciNet  MATH  Google Scholar 

  6. Berline N, Getzler E, Vergne M. Heat Kernels and Dirac Operators. Grundlehren Text Editions. Berlin: SpringerVerlag, 2004

    Google Scholar 

  7. Berthomieu A. Direct image for some secondary K-theories. Astérisque, 2009, 327: 289–360

    MathSciNet  MATH  Google Scholar 

  8. Bismut J-M. The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs. Invent Math, 1986, 83: 91–151

    Article  MathSciNet  MATH  Google Scholar 

  9. Bismut J-M, Cheeger J. η-invariants and their adiabatic limits. J Amer Math Soc, 1989, 2: 33–70

    MathSciNet  MATH  Google Scholar 

  10. Bismut J-M, Freed D S. The analysis of elliptic families. I. Metrics and connections on determinant bundles. Comm Math Phys, 1986, 106: 159–176

    Article  MathSciNet  MATH  Google Scholar 

  11. Bismut J-M, Freed D S. The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Comm Math Phys, 1986, 107: 103–163

    Article  MathSciNet  MATH  Google Scholar 

  12. Bismut J-M, Lebeau G. Complex immersions and Quillen metrics. Publ Math Inst Hautes Études Sci, 1991, 74: 1–291

    Article  MATH  Google Scholar 

  13. Bredon G. Introduction to Compact Transformation Groups. New York: Academic Press, 1972

    MATH  Google Scholar 

  14. Bunke U. Index theory, eta forms, and Deligne cohomology. Mem Amer Math Soc, 2009, 198: 1–120

    MathSciNet  MATH  Google Scholar 

  15. Bunke U, Ma X. Index and secondary index theory for flat bundles with duality. In: Aspects of Boundary Problems in Analysis and Geometry. Operator Theory: Advances and Applications, vol. 151. Basel: Birkhäuser, 2004, 265–341

    Chapter  MATH  Google Scholar 

  16. Bunke U, Schick T. Smooth K-theory. Astérisque, 2009, 328: 45–135

    MathSciNet  MATH  Google Scholar 

  17. Bunke U, Schick T. Differential K-theory: A survey. In: Global Differential Geometry. Springer Proceedings in Mathematics, vol. 17. Berlin-Heidelberg: Springer, 2012, 303–357

    Chapter  MATH  Google Scholar 

  18. Bunke U, Schick T. Differential orbifold K-theory. J Noncommut Geom, 2013, 7: 1027–1104

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai X. Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence. J Amer Math Soc, 1991, 4: 265–321

    Article  MathSciNet  MATH  Google Scholar 

  20. Dai X, Zhang W. Higher spectral flow. J Funct Anal, 1998, 157: 432–469

    Article  MathSciNet  MATH  Google Scholar 

  21. de Rham G. Variétés différentiables: Formes, courants, formes harmoniques. Paris: Hermann, 1973

    MATH  Google Scholar 

  22. Dimakis P, Melrose R. Equivariant K-theory and resolution I: Abelian actions. In: Geometric Analysis. In Honor of Gang Tian’s 60th Birthday. Progress in Mathematics, vol. 333. Basel: Birkhäuser, 2020, 71–92

    Chapter  Google Scholar 

  23. Donnelly H. Eta invariants for G-spaces. Indiana Univ Math J, 1978, 27: 889–918

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang H. Equivariant spectral flow and a Lefschetz theorem on odd-dimensional spin manifolds. Pacific J Math, 2005, 220: 299–312

    Article  MathSciNet  MATH  Google Scholar 

  25. Freed D S, Hopkins M. On Ramond-Ramond fields and K-theory. J High Energy Phys, 2000, 5: 44

    Article  MathSciNet  MATH  Google Scholar 

  26. Freed D S, Hopkins M J, Teleman C. Loop groups and twisted K-theory I. J Topol, 2011, 4: 737–798

    Article  MathSciNet  MATH  Google Scholar 

  27. Freed D S, Lott J. An index theorem in differential K-theory. Geom Topol, 2010, 14: 903–966

    Article  MathSciNet  MATH  Google Scholar 

  28. Getzler E. The odd Chern character in cyclic homology and spectral flow. Topology, 1993, 32: 489–507

    Article  MathSciNet  MATH  Google Scholar 

  29. Gorokhovsky A, Lott J. A Hilbert bundle description of differential K-theory. Adv Math, 2018, 328: 661–712

    Article  MathSciNet  MATH  Google Scholar 

  30. Hirsch M W. Differential Topology. Graduate Texts in Mathematics, vol. 33. New York-Heidelberg-Berlin: SpringerVerlag, 1976

    MATH  Google Scholar 

  31. Hopkins M J, Singer I M. Quadratic functions in geometry, topology, and M-theory. J Differential Geom, 2005, 70: 329–452

    Article  MathSciNet  MATH  Google Scholar 

  32. Lawson H B, Michelsohn M-L. Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton: Princeton University Press, 1990

    MATH  Google Scholar 

  33. Leichtnam E, Piazza P. Dirac index classes and the noncommutative spectral flow. J Funct Anal, 2003, 200: 348–400

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu B. Functoriality of equivariant eta forms. J Noncommut Geom, 2017, 11: 225–307

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu B. Real embedding and equivariant eta forms. Math Z, 2019, 292: 849–878

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu B, Ma X. Differential K-theory and localization formula for η-invariants. Invent Math, 2020, 222: 545–613

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu K, Ma X. On family rigidity theorems, I. Duke Math J, 2000, 102: 451–474

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu K, Ma X, Zhang W. Spinc manifolds and rigidity theorems in K-theory. Asian J Math, 2000, 4: 933–959

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma X. Formes de torsion analytique et familles de submersions I. Bull Soc Math France, 1999, 127: 541–621

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma X. Submersions and equivariant Quillen metrics. Ann Inst Fourier Grenoble, 2000, 50: 1539–1588

    Article  MathSciNet  MATH  Google Scholar 

  41. Ma X. Functoriality of real analytic torsion forms. Israel J Math, 2002, 131: 1–50

    Article  MathSciNet  MATH  Google Scholar 

  42. Ma X, Marinescu G. Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol. 254. Basel: Birkhäuser, 2007

    MATH  Google Scholar 

  43. Melrose R B, Piazza P. Families of Dirac operators, boundaries and the b-calculus. J Differential Geom, 1997, 46: 99–180

    Article  MathSciNet  MATH  Google Scholar 

  44. Melrose R B, Piazza P. An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary. J Differential Geom, 1997, 46: 287–334

    Article  MathSciNet  MATH  Google Scholar 

  45. Mostow G D. Cohomology of topological groups and solvmanifolds. Ann of Math (2), 1961, 73: 20–48

    Article  MathSciNet  MATH  Google Scholar 

  46. Ortiz M L. Differential equivariant K-theory. PhD Thesis. Austin: The University of Texas at Austin, 2009

    Google Scholar 

  47. Quillen D. Superconnections and the Chern character. Topology, 1985, 24: 89–95

    Article  MathSciNet  MATH  Google Scholar 

  48. Segal G. Equivariant K-theory. Publ Math Inst Hautes Études Sci, 1968, 34: 129–151

    Article  MATH  Google Scholar 

  49. Simons J, Sullivan D. Structured vector bundles define differential K-theory. In: Quanta fo Maths. Clay Mathematics Proceedings, vol. 11. Providence: Amer Math Soc, 2010, 579–599

    Google Scholar 

  50. Szabo R J, Valentino A. Ramond-Ramond fields, fractional branes and orbifold differential K-theory. Comm Math Phys, 2010, 294: 647–702

    Article  MathSciNet  MATH  Google Scholar 

  51. Tradler T, Wilson S O, Zeinalian M. An elementary differential extension of odd K-theory. J K-Theory, 2013, 12: 331–361

    Article  MathSciNet  MATH  Google Scholar 

  52. Witten E. D-branes and K-theory. J High Energy Phys, 1998, 1998: 19

    Article  MATH  Google Scholar 

  53. Zhang W. Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, vol. 4. River Edge: World Scientific, 2001

    Book  MATH  Google Scholar 

  54. Zhang W. An extended Cheeger-Müller theorem for covering spaces. Topology, 2005, 44: 1093–1131

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Commission of Shanghai Municipality (STCSM) (Grant No. 18dz2271000), Natural Science Foundation of Shanghai (Grant No. 20ZR1416700) and National Natural Science Foundation of China (Grant No. 11931007). The author thanks Professors Xiaonan Ma and Ulrich Bunke for helpful discussions. The author thanks Shu Shen and Guoyuan Chen for the conversations. The author also thanks the anonymous referees for various helpful suggestions that improved the clarity and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B. Equivariant eta forms and equivariant differential K-theory. Sci. China Math. 64, 2159–2206 (2021). https://doi.org/10.1007/s11425-020-1852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1852-5

Keywords

MSC(2020)

Navigation