Skip to main content
Log in

Dualities in comparison theorems and bundle-valued generalized harmonic forms on noncompact manifolds

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We observe, utilize dualities in differential equations and differential inequalities (see Theorem 2.1), dualities between comparison theorems in differential equations (see Theorems E and 2.2), and obtain dualities in ‘swapping’ comparison theorems in differential equations. These dualities generate comparison theorems on differential equations of mixed types I and II (see Theorems 2.3 and 2.4) and lead to comparison theorems in Riemannian geometry (see Theorems 2.5 and 2.8) with analytic, geometric, PDE’s and physical applications. In particular, we prove Hessian comparison theorems (see Theorems 3.1–3.5) and Laplacian comparison theorems (see Theorems 2.6, 2.7 and 3.1–3.5) under varied radial Ricci curvature, radial curvature, Ricci curvature and sectional curvature assumptions, generalizing and extending the work of Han-Li-Ren-Wei (2014) and Wei (2016). We also extend the notion of function or differential form growth to bundle-valued differential form growth of various types and discuss their interrelationship (see Theorem 5.4). These provide tools in extending the notion, integrability and decomposition of generalized harmonic forms to those of bundle-valued generalized harmonic forms, introducing Condition W for bundle-valued differential forms, and proving the duality theorem and the unity theorem, generalizing the work of Andreotti and Vesentini (1965) and Wei (2020). We then apply Hessian and Laplacian comparison theorems to obtain comparison theorems in mean curvature, generalized sharp Caffarelli-Kohn-Nirenberg type inequalities on Riemannian manifolds, the embedding theorem for weighted Sobolev spaces of functions on manifolds, geometric differential-integral inequalities, generalized sharp Hardy type inequalities on Riemannian manifolds, monotonicity formulas and vanishing theorems for differential forms of degree k with values in vector bundles, such as F-Yang-Mills fields (when F is the identity map, they are Yang-Mills fields), generalized Yang-Mills-Born-Infeld fields on manifolds, Liouville type theorems for F - harmonic maps (when \(F\left(t \right) = {1 \over p}{\left({2t} \right)^{{p \over 2}}},p > 1\), they become p-harmonic maps or harmonic maps if p = 2), and Dirichlet problems on starlike domains for vector bundle valued differential 1-forms and {tF}-harmonic maps (see Theorems 4.1, 7.3–7.7, 8.1, 9.1–9.3, 10.1, 11.2, 12.1 and 12.2), generalizing the work of Caffarelli et al. (1984) and Costa (2008), in which M = ℝn and its radial curvature K(r) = 0, the work of Wei and Li (2009), Chen et al. (2011, 2014), Dong and Wei (2011), Wei (2020) and Karcher and Wood (1984), etc. The boundary value problem for bundle-valued differential 1-forms is in contrast to the Dirichlet problem for p-harmonic maps to which the solution is due to Hamilton (1975) for the case p = 2 and RiemN ⩽ 0, and Wei (1998) for 1 < p < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandra Rugina D. Lp-integrabilité des formes harmoniques k-finies sur les espaces hyperboliques réels et complexes. Rend Semin Mat Univ Politec Torino, 1996, 54: 75–87

    MATH  Google Scholar 

  2. Allard W K. On the first variation of a varifold. Ann of Math (2), 1972, 95: 417–491

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreotti A, Vesentini E. Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Publ Math Inst Hautes Etudes Sci, 1965, 25: 81–130

    Article  MathSciNet  MATH  Google Scholar 

  4. Ara M. Geometry of F-harmonic maps. Kodai Math J, 1999, 22: 243–263

    Article  MathSciNet  MATH  Google Scholar 

  5. Baird P. Stress-energy tensors and the Lichnerowicz Laplacian. J Geom Phys, 2008, 58: 1329–1342

    Article  MathSciNet  MATH  Google Scholar 

  6. Baird P, Eells J. A conservation law for harmonic maps. In: Geometry Symposium. Lecture Notes in Mathematics, vol. 894. New York: Springer, 1982, 1–25

    Google Scholar 

  7. Caffarelli L, Kohn R, Nirenberg L. First order interpolation inequalities with weights. Compos Math, 1984, 53: 259–275

    MathSciNet  MATH  Google Scholar 

  8. Chang S C, Chen J T, Wei S W. Liouville properties for p-harmonic maps with finite q-energy. Trans Amer Math Soc, 2016, 368: 787–825

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen B-Y, Wei S W. Growth estimates for warping functions and their geometric applications. Glasg Math J, 2009, 51: 579–592

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen B-Y, Wei S W. Sharp growth estimates for warping functions in multiply warped product manifolds. J Geom Symmetry Phys, 2019, 52: 27–46

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen B-Y, Wei S W. Riemannian submanifolds with concircular canonical field. Bull Korean Math Soc, 2019, 56: 1525–1537

    MathSciNet  MATH  Google Scholar 

  12. Chen J-T, Li Y, Wei S W. Generalized Hardy type inequalities, Liouville theorems and Picard theorems in p-harmonic geometry. In: Riemannian Geometry and Applications. Proceedings RIGA 2011. Bucharest: Editura Universităţii din Bucureşti, 2011, 95–108

    Google Scholar 

  13. Chen J-T, Li Y, Wei S W. Some geometric inequalities on manifolds with a pole. In: Riemannian Geometry and Applications. Proceedings RIGA 2014. Bucharest: Editura Universităţii din Bucureşti, 2014, 46–54

    Google Scholar 

  14. Costa D G. Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities. J Math Anal Appl, 2008, 337: 311–317

    Article  MathSciNet  MATH  Google Scholar 

  15. De Giorgi E. Una estensione del teorema di Bernstein. Ann Sc Norm Super Pisa Cl Sci (5), 1965, 19: 79–85

    MathSciNet  MATH  Google Scholar 

  16. Dong Y X, Lin H Z, Wei S W. L2 curvature pinching theorems and vanishing theorems on complete Riemannian manifolds. Tohoku Math J (2), 2019, 71: 581–607

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong Y X, Wei S W. On vanishing theorems for vector bundle valued p-forms and their applications. Comm Math Phys, 2011, 304: 329–368

    Article  MathSciNet  MATH  Google Scholar 

  18. Federer H, Fleming W H. Normal and integral currents. Ann of Math (2), 1960, 72: 458–520

    Article  MathSciNet  MATH  Google Scholar 

  19. Fleming W H. On the oriented Plateau problem. Rend Circ Mat Palermo (2), 1962, 11: 69–90

    Article  MathSciNet  MATH  Google Scholar 

  20. Gherghe C. On a gauge-invariant functional. Proc Edinb Math Soc (2), 2010, 53: 143–151

    Article  MathSciNet  MATH  Google Scholar 

  21. Greene R E, Wu H. Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Mathematics, vol. 699. Berlin-Heidelberg: Springer-Verlag, 1979

    Book  MATH  Google Scholar 

  22. Grigor’yan A. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull Amer Math Soc NS, 1999, 36: 135–249

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamilton R S. Harmonic Maps of Manifolds with Boundary. Lecture Notes in Mathematics, vol. 471. Berlin-New York: Springer-Verlag, 1975

    Book  MATH  Google Scholar 

  24. Han Y B, Li Y, Ren Y B, et al. New comparison theorems in Riemannian geometry. Bull Inst Math Acad Sin NS, 2014, 9: 163–186

    MathSciNet  MATH  Google Scholar 

  25. Hardt R, Lin F H. Mappings minimizing the Lp norm of the gradient. Comm Pure Appl Math, 1987, 40: 555–588

    Article  MathSciNet  MATH  Google Scholar 

  26. Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge: Cambridge University Press, 1952

    MATH  Google Scholar 

  27. Karcher H, Wood J C. Non-existence results and growth properties for harmonic maps and forms. J Reine Angew Math, 1984, 353: 165–180

    MathSciNet  MATH  Google Scholar 

  28. Lu M, Shen X W, Cai K R. Liouville type theorem for p-forms valued on vector bundle (in Chinese). J Hangzhou Norm Univ Nat Sci, 2008, 7: 96–100

    MATH  Google Scholar 

  29. Luckhaus S. Partial Holder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ Math J, 1988, 37: 349–367

    Article  MathSciNet  MATH  Google Scholar 

  30. Mitidieri E. A simple approach to Hardy inequalities. Math Notes, 2000, 67: 479–486

    Article  MathSciNet  MATH  Google Scholar 

  31. Pigola S, Rigoli M, Setti A G. Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Progress in Mathematics, vol. 266. Basel: Birkhauser, 2008

    MATH  Google Scholar 

  32. Price P. A monotonicity formula for Yang-Mills fields. Manuscripta Math, 1983, 43: 131–166

    Article  MathSciNet  MATH  Google Scholar 

  33. Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J Differential Geom, 1982, 17: 307–335

    MathSciNet  MATH  Google Scholar 

  34. Sibner L, Sibner R, Yang Y S. Generalized Bernstein property and gravitational strings in Born-Infeld theory. Non-linearity, 2007, 20: 1193–1213

    MathSciNet  MATH  Google Scholar 

  35. Wei S W. Representing homotopy groups and spaces of maps by p-harmonic maps. Indiana Univ Math J, 1998, 47: 625–670

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei S W. p-harmonic geometry and related topics. Bull Transilv Univ Brasov Ser III NS, 2008, 50: 415–453

    MathSciNet  MATH  Google Scholar 

  37. Wei S W. The unity of p-harmonic geometry. In: Recent Developments in Geometry and Analysis. Advanced Lectures in Mathematics, vol. 23. Beijing-Boston: Higher Education Press and International Press, 2012, 439–483

    Google Scholar 

  38. Wei S W. Comparison theorems in Riemannian geometry with applications. In: Recent Advances in the Geometry of Submanifolds. Contemporary Mathematics, vol. 674. Providence: Amer Math Soc, 2016, 185–209

    Chapter  Google Scholar 

  39. Wei S W. Growth estimates for generalized harmonic forms on noncompact manifolds with geometric applications. In: Geometry of Submanifolds. Contemporary Mathematics, vol. 756. Providence: Amer Math Soc, 2020, 247–269

    Chapter  Google Scholar 

  40. Wei S W, Li J, Wu L. Generalizations of the uniformization theorem and Bochner’s method in p-harmonic geometry. Commun Math Anal, 2008, Conference 1: 46–68

  41. Wei S W, Li Y. Generalized sharp Hardy type and Caffarelli-Kohn-Nirenberg type inequalities on Riemannian manifolds. Tamkang J Math, 2009, 40: 401–413

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei S W, Wu B Y. Generalized Hardy type and Caffarelli-Kohn-Nirenberg type inequalities on Finsler manifolds. Internat J Math, 2020, 31: 2050109

    Article  MathSciNet  MATH  Google Scholar 

  43. Yau S T. Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ Math J, 1976, 25: 659–670

    Article  MathSciNet  MATH  Google Scholar 

  44. Yau S T. Erratum: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ Math J, 1982, 31: 607

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of USA (Grant No. DMS-1447008). The author thanks the referees for their comments and suggestions which helped the author prepare the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihshu Walter Wei.

Additional information

In Memory of Professor Zhengguo Bai (1916–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S.W. Dualities in comparison theorems and bundle-valued generalized harmonic forms on noncompact manifolds. Sci. China Math. 64, 1649–1702 (2021). https://doi.org/10.1007/s11425-020-1819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1819-9

Keywords

MSC(2020)

Navigation