Skip to main content
Log in

Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we deal with the existence and concentration of normalized solutions to the supercritical nonlinear Schrödinger equation

$$\left\{ {\matrix{ { - {\rm{\Delta }}u + V\left( x \right)u = {\mu _q}u + a{{\left| u \right|}^q}u\,\,\,{\rm{in}}\,{\mathbb{R}^2},} \hfill \cr {\int_{{\mathbb{R}^2}} {{{\left| u \right|}^2}dx = 1,} } \hfill \cr } } \right.$$

where μq is the Lagrange multiplier. We show that for q > 2 close to 2, the problem admits two solutions: one is the local minimal solution uq and the other one is the mountain pass solution υq. Furthermore, we study the limiting behavior of uq and υq when q → 2+. Particularly, we describe precisely the blow-up formation of the excited state υq.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzollini A, Pomponio A. On the Schrödinger equation in ℝN under the effect of a general nonlinear term. Indiana Univ Math J, 2009, 58: 1361–1378

    Article  MathSciNet  Google Scholar 

  2. Bartsch T, de Valeriola S. Normalized solutions of nonlinear Schrödinger equations. Arch Math (Basel), 2012, 100: 75–83

    Article  Google Scholar 

  3. Bartsch T, Soave N. A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J Funct Anal, 2017, 272: 4998–5037

    Article  MathSciNet  Google Scholar 

  4. Bellazzini J, Jeanjean L. On dipolar quantum gases in the unstable regime. SIAM J Math Anal, 2016, 48: 2028–2058

    Article  MathSciNet  Google Scholar 

  5. Berestycki H, Lions P L. Nonlinear scalar field equations, I and II. Arch Ration Mech Anal, 1983, 82: 313–346, 347–375

    Article  Google Scholar 

  6. Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Providence: Amer Math Soc, 2003

    Book  Google Scholar 

  7. Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases. Rev Modern Phys, 1999, 71: 463–512

    Article  Google Scholar 

  8. Ghoussoub N. Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107. Cambridge: Cambridge University Press, 1993

    Book  Google Scholar 

  9. Guo Y J, Seiringer R. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett Math Phys, 2014, 104: 141–156

    Article  MathSciNet  Google Scholar 

  10. Guo Y J, Zeng X Y, Zhou H S. Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations. J Differential Equations, 2014, 256: 2079–2100

    Article  MathSciNet  Google Scholar 

  11. Han Q, Lin F H. Elliptic Partial Differential Equations, 2nd ed. Courant Lecture Notes, vol. 1. New York: Courant Inst Math Sci/Amer Math Soc, 2011

    MATH  Google Scholar 

  12. Huepe C, Métens S, Dewel G, et al. Decay rates in attractive Bose-Einstein condensates. Phys Rev Lett, 1999, 82: 1616–1619

    Article  Google Scholar 

  13. Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28: 1633–1659

    Article  MathSciNet  Google Scholar 

  14. Kagan Y, Muryshev A E, Shlyapnikov G V. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length. Phys Rev Lett, 1998, 81: 933–937

    Article  Google Scholar 

  15. Kwong M K. Uniqueness of positive solutions of Δuu + up = 0 in ℝN. Arch Ration Mech Anal, 1989, 105: 243–266

    Article  Google Scholar 

  16. Li Y, Ni W M. Radial symmetry of positive solutions of nonlinear elliptic equations in ℝn. Comm Partial Differential Equations, 1993, 18: 1043–1054

    Article  MathSciNet  Google Scholar 

  17. Sackett C A, Stoof H T C, Hulet R G. Growth and collapse of a Bose-Einstein condensate with attractive interactions. Phys Rev Lett, 1998, 80: 20–31

    Article  Google Scholar 

  18. Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567–576

    Article  Google Scholar 

  19. Willem M. Minimax Theorems. Boston-Basel-Berlin: Birkhäuser, 1996

    Book  Google Scholar 

  20. Yang J F, Yang J G. Existence and mass concentration of pseudo-relativistic Hartree equation. J Math Phys, 2017, 58: 081501

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11671179 and 11771300). The second author was supported by National Natural Science Foundation of China (Grant No. 11701260) and Natural Science Foundation of Jiangxi Province (Grant Nos. GJJ161112 and GJJ180946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinge Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yang, J. Normalized solutions and mass concentration for supercritical nonlinear Schrödinger equations. Sci. China Math. 65, 1383–1412 (2022). https://doi.org/10.1007/s11425-020-1793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1793-9

Keywords

MSC(2020)

Navigation