Skip to main content
Log in

Asymptotic expansions in the central limit theorem for a branching Wiener process

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider a branching Wiener process in ℝd, in which particles reproduce as a super-critical Galton-Watson process and disperse according to a Wiener process. For B ⊂ ℝd, let Zn(B) be the number of particles of generation n located in B. The study of the central limit theorem and related results about the counting measure Zn(·) is important because such results give good descriptions of the configuration of the branching Wiener process at time n. In earlier works, the exact convergence rate in the central limit theorem and the asymptotic expansion until the third order have been given. Here, we establish the asymptotic expansion of any order in the central limit theorem under a moment condition of the form EX (log X)1+λ < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen S. Convergence rates for branching processes. Ann Probab, 1976, 4: 139–146

    Article  MathSciNet  Google Scholar 

  2. Asmussen S, Hering H. Branching Processes. Boston: Birkhäuser, 1983

    Book  Google Scholar 

  3. Asmussen S, Kaplan N. Branching random walks. I. Stochastic Process Appl, 1976, 4: 1–13

    Article  MathSciNet  Google Scholar 

  4. Athreya K B, Ney P E. Branching Processes. New York: Springer-Verlag, 1972

    Book  Google Scholar 

  5. Beals R, Wong R. Special Functions. Cambridge: Cambridge University Press, 2010

    Book  Google Scholar 

  6. Biggins J D. The central limit theorem for the supercritical branching random walk, and related results. Stochastic Process Appl, 1990, 34: 255–274

    Article  MathSciNet  Google Scholar 

  7. Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes. I: The Galton-Watson process. Adv Appl Probab, 1974, 6: 711–731

    Article  MathSciNet  Google Scholar 

  8. Chen X. Exact convergence rates for the distribution of particles in branching random walks. Ann Appl Probab, 2001, 11: 1242–1262

    Article  MathSciNet  Google Scholar 

  9. Chen X, He H. On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements. Probab Theory Related Fields, 2019, 175: 255–307

    Article  MathSciNet  Google Scholar 

  10. Erdélyi A. Higher Transcendental Functions, Volume II. New York: McGraw-Hill Book Company, 1955

    Google Scholar 

  11. Gao Z Q. Exact convergence rate of the local limit theorem for branching random walks on the integer lattice. Stochastic Process Appl, 2017, 127: 1282–1296

    Article  MathSciNet  Google Scholar 

  12. Gao Z Q, Liu Q. Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time. Stochastic Process Appl, 2016, 126: 2634–2664

    Article  MathSciNet  Google Scholar 

  13. Gao Z Q, Liu Q. First- and second-order expansions in the central limit theorem for a branching random walk. C R Math Acad Sci Paris, 2016, 354: 532–537

    Article  MathSciNet  Google Scholar 

  14. Gao Z Q, Liu Q. Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time. Bernoulli, 2018, 24: 772–800

    MathSciNet  MATH  Google Scholar 

  15. Gao Z Q, Liu Q, Wang H. Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci Ser B Engl Ed, 2014, 34: 501–512

    Article  MathSciNet  Google Scholar 

  16. Grübel R, Kabluchko Z. A functional central limit theorem for branching random walks, almost sure weak convergence and applications to random trees. Ann Appl Probab, 2016, 26: 3659–3698

    Article  MathSciNet  Google Scholar 

  17. Grübel R, Kabluchko Z. Edgeworth expansions for profiles of lattice branching random walks. Ann Inst H Poincaré Probab Statist, 2017, 53: 2103–2134

    Article  MathSciNet  Google Scholar 

  18. Harris T E. The Theory of Branching Processes. Berlin: Springer-Verlag, 1963

    Book  Google Scholar 

  19. Hong W, Zhang X. Asymptotic behaviour of heavy-tailed branching processes in random environments. Electron J Probab, 2019, 24: 56, 17pp

    Article  MathSciNet  Google Scholar 

  20. Iksanov A, Kabluchko Z. A central limit theorem and a law of the iterated logarithm for the Biggins martingale of the supercritical branching random walk. J Appl Probab, 2016, 53: 1178–1192

    Article  MathSciNet  Google Scholar 

  21. Iksanov A, Liang X, Liu Q. On Lp-convergence of the Biggins martingale with complex parameter. J Math Anal Appl, 2019, 479: 1653–1669

    Article  MathSciNet  Google Scholar 

  22. Joffe A, Moncayo A R. Random variables, trees, and branching random walks. Adv Math, 1973, 10: 401–416

    Article  MathSciNet  Google Scholar 

  23. Kabluchko Z. Distribution of levels in high-dimensional random landscapes. Ann Appl Probab, 2012, 22: 337–362

    Article  MathSciNet  Google Scholar 

  24. Kaplan N, Asmussen S. Branching random walks. II. Stochastic Process Appl, 1976, 4: 15–31

    Article  MathSciNet  Google Scholar 

  25. Klebaner C F. Branching random walk in varying environments. Adv Appl Probab, 1982, 14: 359–367

    Article  MathSciNet  Google Scholar 

  26. Liang X, Liu Q. Regular variation of fixed points of the smoothing transform. Stochastic Process Appl, 2020, 130: 4104–4140

    Article  MathSciNet  Google Scholar 

  27. Nakashima M. Almost sure central limit theorem for branching random walks in random environment. Ann Appl Probab, 2011, 21: 351–373

    Article  MathSciNet  Google Scholar 

  28. Révész P. Random Walks of Infinitely Many Particles. River Edge: World Scientific, 1994

    Book  Google Scholar 

  29. Révész P, Rosen J, Shi Z. Large-time asymptotics for the density of a branching Wiener process. J Appl Probab, 2005, 42: 1081–1094

    Article  MathSciNet  Google Scholar 

  30. Shiryaev A N. Probability, 2nd ed. New York: Springer-Verlag, 1996

    Book  Google Scholar 

  31. Stam A J. On a conjecture by Harris. Z Wahrscheinlichkeitstheorie verw Gebiete, 1966, 5: 202–206

    Article  MathSciNet  Google Scholar 

  32. Wang Y, Liu Z, Liu Q, et al. Asymptotic properties of a branching random walk with a random environment in time. Acta Math Sci Ser B Engl Ed, 2019, 39: 1345–1362

    Article  MathSciNet  Google Scholar 

  33. Yoshida N. Central limit theorem for branching random walks in random environment. Ann Appl Probab, 2008, 18: 1619–1635

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11971063 and 11731012), Hunan Natural Science Foundation of China (Grant No. 2017JJ2271), the Natural Science Foundation of Guangdong Province of China (Grant No. 2015A030313628), and the French Government “Investissements d’Avenir” Program (Grant No. ANR-11-LABX-0020-01). The authors thank the anonymous referees for helpful comments and suggestions. The work has benefited from some visits of Quansheng Liu to the School of Mathematical Sciences of Beijing Normal University, whose financial support and hospitality have been well appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, ZQ., Liu, Q. Asymptotic expansions in the central limit theorem for a branching Wiener process. Sci. China Math. 64, 2759–2774 (2021). https://doi.org/10.1007/s11425-020-1776-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1776-4

Keywords

MSC(2020)

Navigation