Skip to main content
Log in

Affine Pólya-Szegö inequality on Steiner rearrangement in any codimension

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The affine Polya-Szego inequality on the Steiner rearrangement in any codimension is proved. We not only define k-Orlicz-Sobolev ball on Sobolev functions and prove corresponding affine Polya-Szego inequality, but also define k-Orlicz-Sobolev ball on functions of bounded variation and prove the corresponding affine Polya-Szego inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren Jr F J, Lieb E H. Symmetric decreasing rearrangement is sometimes continuous. J Amer Math Soc, 1989, 2: 683–773

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio L, Fusco N, Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. New York: The Clarendon Press, Oxford University Press, 2000

    MATH  Google Scholar 

  3. Barchiesi M, Cagnetti F, Fusco N. Stability of the Steiner symmetrization of convex sets. J Eur Math Soc (JEMS), 2013, 15: 1245–1278

    Article  MathSciNet  MATH  Google Scholar 

  4. Barchiesi M, Capriani G M, Fusco N, et al. Stability of Pólya-Szegö inequality for log-concave functions. J Funct Anal, 2014, 267: 2264–2297

    Article  MathSciNet  MATH  Google Scholar 

  5. Böröczky K J. Stronger versions of the Orlicz-Petty projection inequality. J Differential Geom, 2013, 95: 215–247

    Article  MathSciNet  MATH  Google Scholar 

  6. Böröczky K J, Lutwak E, Yang D, et al. The log-Brunn-Minkowski inequality. Adv Math, 2012, 231: 1974–1997

    Article  MathSciNet  MATH  Google Scholar 

  7. Brothers J E, Ziemer W P. Minimal rearrangements of Sobolev functions. J Reine Angew Math, 1988, 384: 153–179

    MathSciNet  MATH  Google Scholar 

  8. Burchard A. Cases of equality in the Riesz rearrangement inequality. Ann of Math (2), 1996, 143: 499–527

    Article  MathSciNet  MATH  Google Scholar 

  9. Burchard A. Steiner symmetrization is continuous in W1, p. Geom Funct Anal, 1997, 7: 823–860

    Article  MathSciNet  MATH  Google Scholar 

  10. Burchard A, Ferone A. On the extremals of the Pólya-Szegö inequality. Indiana Univ Math J, 2015, 64: 1447–1463

    Article  MathSciNet  MATH  Google Scholar 

  11. Capriani G M. The Steiner rearrangement in any codimension. Calc Var Partial Differential Equations, 2014, 49: 517–548

    Article  MathSciNet  MATH  Google Scholar 

  12. Cianchi A. Second-order derivatives and rearrangements. Duke Math J, 2000, 105: 355–385

    Article  MathSciNet  MATH  Google Scholar 

  13. Cianchi A. On some aspects of the theory of Orlicz-Sobolev spaces. In: Around the Research of Vladimir Maz’ya I. International Mathematical Series, vol. 11. New York: Springer, 2010, 81–104

    Chapter  Google Scholar 

  14. Cianchi A, Esposito L, Fusco N, et al. A quantitative Pólya-Szegö principle. J Reine Angew Math, 2008, 614: 153–189

    MathSciNet  MATH  Google Scholar 

  15. Cianchi A, Fusco N. Functions of bounded variation and rearrangements. Arch Ration Mech Anal, 2002, 165: 1–40

    Article  MathSciNet  MATH  Google Scholar 

  16. Cianchi A, Fusco N. Minimal rearrangements, strict convexity and critical points. Appl Anal, 2006, 85: 67–85

    Article  MathSciNet  MATH  Google Scholar 

  17. Cianchi A, Fusco N. Steiner symmetric extremals in Pólya-Szegö type inequalities. Adv Math, 2006, 203: 673–728

    Article  MathSciNet  MATH  Google Scholar 

  18. Cianchi A, Lutwak E, Yang D, et al. Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc Var Partial Differential Equations, 2009, 36: 419–436

    Article  MathSciNet  MATH  Google Scholar 

  19. Cianchi A, Pick L, Slavíková L. Higher-order Sobolev embeddings and isoperimetric inequalities. Adv Math, 2015, 273: 568–650

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions. Boca Raton: CRC Press, 2015

    Book  MATH  Google Scholar 

  21. Fusco N, Maggi F, Pratelli A. The sharp quantitative isoperimetric inequality. Ann of Math (2), 2008, 168: 941–980

    Article  MathSciNet  MATH  Google Scholar 

  22. Gardner R J. The Brunn-Minkowski inequality. Bull Amer Math Soc (NS), 2002, 39: 355–405

    Article  MathSciNet  MATH  Google Scholar 

  23. Gardner R J. Geometric Tomography, 2nd ed. New York: Cambridge University Press, 2006

    Book  MATH  Google Scholar 

  24. Gardner R J, Hug D, Weil W. The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities. J Differential Geom, 2014, 97: 427–476

    Article  MathSciNet  MATH  Google Scholar 

  25. Gardner R J, Hug D, Weil W, et al. The dual Orlicz-Brunn-Minkowski theory. J Math Anal Appl, 2015, 430: 810–829

    Article  MathSciNet  MATH  Google Scholar 

  26. Gardner R J, Zhang G. Affine inequalities and radial mean bodies. Amer J Math, 1998, 120: 505–528

    Article  MathSciNet  MATH  Google Scholar 

  27. Giaquinta M, Modica G, Soucek J. Cartesian Currents in the Calculus of Variations I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Berlin-Heidelberg: Springer-Verlag, 1998

    MATH  Google Scholar 

  28. Gruber P M. Convex and Discrete Geometry. Berlin: Springer, 2007

    MATH  Google Scholar 

  29. Haberl C, Lutwak E, Yang D, et al. The even Orlicz Minkowski problem. Adv Math, 2010, 224: 2485–2510

    Article  MathSciNet  MATH  Google Scholar 

  30. Haberl C, Parapatits L. The centro-affine Hadwiger theorem. J Amer Math Soc, 2014, 27: 685–705

    Article  MathSciNet  MATH  Google Scholar 

  31. Haberl C, Schuster F E. Asymmetric affine Lp Sobolev inequalities. J Funct Anal, 2009, 257: 641–658

    Article  MathSciNet  MATH  Google Scholar 

  32. Haberl C, Schuster F E, Xiao J. An asymmetric affine Pólya-Szegö principle. Math Ann, 2012, 352: 517–542

    Article  MathSciNet  MATH  Google Scholar 

  33. Kesavan S. Symmetrization and Applications. Series in Analysis: Volume 3. Hackensack: World Scientific, 2006

    Book  MATH  Google Scholar 

  34. Lieb E H, Loss M. Analysis, 2nd ed. Graduate Studies in Mathematics, vol. 14. Providence: Amer Math Soc, 2001

    MATH  Google Scholar 

  35. Lin Y. Affine Orlicz Pólya-Szegö principle for log-concave functions. J Funct Anal, 2017, 273: 3295–3326

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin Y. Smoothness of the Steiner symmetrization. Proc Amer Math Soc, 2018, 146: 345–357

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin Y. The affine Orlicz Pólya-Szegö principle on BV(Ω). Calc Var Partial Differential Equations, 2019, 58: 178

    Article  MATH  Google Scholar 

  38. Lin Y, Leng G. Convex bodies with minimal volume product in ℝ2—a new proof. Discrete Math, 2010, 310: 3018–3025

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin Y, Xi D. Affine Orlicz Pólya-Szegö principles and their equality cases. Int Math Res Not IMRN, 2021, 9: 7159–7204

    Article  MATH  Google Scholar 

  40. Ludwig M. General affine surface areas. Adv Math, 2010, 224: 2346–2360

    Article  MathSciNet  MATH  Google Scholar 

  41. Ludwig M, Reitzner M. A characterization of affine surface area. Adv Math, 1999, 147: 138–172

    Article  MathSciNet  MATH  Google Scholar 

  42. Ludwig M, Reitzner M. A classification of SL(n) invariant valuations. Ann of Math (2), 2010, 172: 1219–1267

    Article  MathSciNet  MATH  Google Scholar 

  43. Ludwig M, Xiao J, Zhang G. Sharp convex Lorentz-Sobolev inequalities. Math Ann, 2011, 350: 169–197

    Article  MathSciNet  MATH  Google Scholar 

  44. Lutwak E. The Brunn-Minkowski-Firey theory. I: Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38: 131–150

    Article  MathSciNet  MATH  Google Scholar 

  45. Lutwak E. The Brunn-Minkowski-Firey theory. II: Affine and geominimal surface areas. Adv Math, 1996, 118: 244–294

    Article  MathSciNet  MATH  Google Scholar 

  46. Lutwak E, Yang D, Zhang G. Lp affine isoperimetric inequalities. J Differential Geom, 2000, 56: 111–132

    Article  MathSciNet  MATH  Google Scholar 

  47. Lutwak E, Yang D, Zhang G. Sharp affine Lp Sobolev inequalities. J Differential Geom, 2002, 62: 17–38

    Article  MathSciNet  MATH  Google Scholar 

  48. Lutwak E, Yang D, Zhang G. The Cramer-Rao inequality for star bodies. Duke Math J, 2002, 112: 59–81

    Article  MathSciNet  MATH  Google Scholar 

  49. Lutwak E, Yang D, Zhang G. Volume inequalities for subspaces of Lp. J Differential Geom, 2004, 68: 159–184

    Article  MathSciNet  MATH  Google Scholar 

  50. Lutwak E, Yang D, Zhang G. Optimal Sobolev norms and the Lp Minkowski problem. Int Math Res Not IMRN, 2006, 2006: 62987

    MATH  Google Scholar 

  51. Lutwak E, Yang D, Zhang G. Orlicz projection bodies. Adv Math, 2010, 223: 220–242

    Article  MathSciNet  MATH  Google Scholar 

  52. Lutwak E, Yang D, Zhang G. Orlicz centroid bodies. J Differential Geom, 2010, 84: 365–387

    Article  MathSciNet  MATH  Google Scholar 

  53. Lutwak E, Yang D, Zhang G. A volume inequality for polar bodies. J Differential Geom, 2010, 84: 163–178

    Article  MathSciNet  MATH  Google Scholar 

  54. Maz’ya V G. Sobolev Spaces. Berlin: Springer-Verlag, 1985

    Book  MATH  Google Scholar 

  55. Nguyen V H. New approach to the affine Pólya-Szegö principle and the stability version of the affine Sobolev inequality. Adv Math, 2016, 302: 1080–1110

    Article  MathSciNet  MATH  Google Scholar 

  56. Pólya G, Szegö G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27. Princeton: Princeton University Press, 1951

    MATH  Google Scholar 

  57. Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge: Cambridge University Press, 2014

    MATH  Google Scholar 

  58. Talenti G. On isoperimetric theorems in mathematical physics. Handbook of Convex Geometry. Amsterdam: North-Holland, 1993

    MATH  Google Scholar 

  59. Wang T. The affine Sobolev-Zhang inequality on BV(ℝn). Adv Math, 2012, 230: 2457–2473

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang G. The affine Sobolev inequality. J Differential Geom, 1999, 53: 183–202

    Article  MathSciNet  MATH  Google Scholar 

  61. Ziemer W P. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, vol. 120. New York: Springer, 1989

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11971080), the Basic and Advanced Research Project of Chongqing, Chongqing Science and Technology Commission (Grant Nos. cstc2015jcyjA00009 and cstc2018jcyjAX0790) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ1500628).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjiang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y. Affine Pólya-Szegö inequality on Steiner rearrangement in any codimension. Sci. China Math. 65, 517–538 (2022). https://doi.org/10.1007/s11425-020-1760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1760-2

Keywords

MSC(2020)

Navigation