Skip to main content
Log in

Spatial propagation in an epidemic model with nonlocal diffusion: The influences of initial data and dispersals

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper studies an epidemic model with nonlocal dispersals. We focus on the influences of initial data and nonlocal dispersals on its spatial propagation. Here, initial data stand for the spatial concentrations of the infectious agent and the infectious human population when the epidemic breaks out and the nonlocal dispersals mean their diffusion strategies. Two types of initial data decaying to zero exponentially or faster are considered. For the first type, we show that spreading speeds are two constants whose signs change with the number of elements in some set. Moreover, we find an interesting phenomenon: the asymmetry of nonlocal dispersals can influence the propagating directions of the solutions and the stability of steady states. For the second type, we show that the spreading speed is decreasing with respect to the exponentially decaying rate of initial data, and further, its minimum value coincides with the spreading speed for the first type. In addition, we give some results about the nonexistence of traveling wave solutions and the monotone property of the solutions. Finally, some applications are presented to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alhasanat A, Ou C. On the conjecture for the pushed wavefront to the diffusive Lotka-Volterra competition model. J Math Biol, 2020, 80: 1413–1422

    MathSciNet  MATH  Google Scholar 

  2. Allen L J S, Bolker B M, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM J Appl Math, 2007, 67: 1283–1309

    MathSciNet  MATH  Google Scholar 

  3. Andreu-Vaillo F, Mazón J M, Rossi J D, et al. Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165. Providence: Amer Math Soc, 2010

    MATH  Google Scholar 

  4. Bao X, Li W-T. Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats. Nonlinear Anal Real World Appl, 2020, 51: 102975

    MathSciNet  MATH  Google Scholar 

  5. Bao X, Li W-T, Shen W, et al. Spreading speeds and linear determinacy of time dependent diffusive cooperative/competitive systems. J Differential Equations, 2018, 265: 3048–3091

    MathSciNet  MATH  Google Scholar 

  6. Bates P W. On some nonlocal evolution equations arising in materials science. In: Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, vol. 48. Providence: Amer Math Soc, 2006, 13–52

    MATH  Google Scholar 

  7. Capasso V, Kunisch K. A reaction-diffusion system arising in modeling man-environment diseases. Quart Appl Math, 1988, 46: 431–450

    MathSciNet  MATH  Google Scholar 

  8. Capasso V, Maddalena L. Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J Math Biol, 1981, 13: 173–184

    MathSciNet  MATH  Google Scholar 

  9. Capasso V, Maddalena L. A nonlinear diffusion system modelling the spread of oro-faecal diseases. In: Nonlinear Phenomena in Mathematical Sciences. New York: Academic Press, 1982, 207–217

    Google Scholar 

  10. Capasso V, Wilson R E. Analysis of a reaction-diffusion system modeling man-environment-man epidemics. SIAM J Appl Math, 1997, 57: 327–346

    MathSciNet  MATH  Google Scholar 

  11. Coulon A C, Yangari M. Exponential propagation for fractional reaction-diffusion cooperative systems with fast decaying initial conditions. J Dynam Differential Equations, 2017, 29: 799–815

    MathSciNet  MATH  Google Scholar 

  12. Coville J, Dávila J, Martínez S. Nonlocal anisotropic dispersal with monostable nonlinearity. J Differential Equations, 2008, 244: 3080–3118

    MathSciNet  MATH  Google Scholar 

  13. Cui R, Lam K Y, Lou Y. Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J Differential Equations, 2017, 263: 2343–2373

    MathSciNet  MATH  Google Scholar 

  14. Cui R, Lou Y. A spatial SIS model in advective heterogeneous environments. J Differential Equations, 2016, 261: 3305–3343

    MathSciNet  MATH  Google Scholar 

  15. Fife P. Some nonclassical trends in parabolic and parabolic-like evolutions. In: Trends in Nonlinear Analysis. Berlin: Springer, 2003, 153–191

    MATH  Google Scholar 

  16. Finkelshtein D, Kondratiev Y, Tkachov P. Doubly nonlocal Fisher-KPP equation: Front propagation. Appl Anal, 2019, doi:https://doi.org/10.1080/00036811.2019.1643011

  17. Hamel F, Nadin G. Spreading properties and complex dynamics for monostable reaction-diffusion equations. Comm Partial Differential Equations, 2012, 37: 511–537

    MathSciNet  MATH  Google Scholar 

  18. Hamel F, Roques L. Fast propagation for KPP equations with slowly decaying initial conditions. J Differential Equations, 2010, 249: 1726–1745

    MathSciNet  MATH  Google Scholar 

  19. Hsu C-H, Yang T-S. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26: 121–139; Corrigendum: Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26: 2925–2928

    MathSciNet  MATH  Google Scholar 

  20. Hu C, Kuang Y, Li B, et al. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete Contin Dyn Syst Ser B, 2015, 20: 1663–1684

    MathSciNet  MATH  Google Scholar 

  21. Kao C-Y, Lou Y, Shen W. Random dispersal vs. non-local dispersal. Discrete Contin Dyn Syst, 2010, 26: 551–596

    MathSciNet  MATH  Google Scholar 

  22. Lewis M A, Li B, Weinberger H F. Spreading speed and linear determinacy for two-species competition models. J Math Biol, 2002, 45: 219–233

    MathSciNet  MATH  Google Scholar 

  23. Li B, Weinberger H F, Lewis M A. Spreading speeds as slowest wave speeds for cooperative systems. Math Biosci, 2005, 196: 82–98

    MathSciNet  MATH  Google Scholar 

  24. Li W-T, Sun Y-J, Wang Z-C. Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal Real World Appl, 2010, 11: 2302–2313

    MathSciNet  MATH  Google Scholar 

  25. Li W-T, Xu W-B, Zhang L. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete Contin Dyn Syst, 2017, 37: 2483–2512

    MathSciNet  MATH  Google Scholar 

  26. Li W-T, Yang F-Y. Traveling waves for a nonlocal dispersal SIR model with standard incidence. J Integral Equations Appl, 2014, 26: 243–273

    MathSciNet  MATH  Google Scholar 

  27. Liang X, Zhao X-Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math, 2007, 60: 1–40; Erratum: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math, 2008, 61: 137–138

    MathSciNet  MATH  Google Scholar 

  28. Liang X, Zhao X-Q. Spreading speeds and traveling waves for abstract monostable evolution systems. J Funct Anal, 2010, 259: 857–903

    MathSciNet  MATH  Google Scholar 

  29. Liu S, Wang M. Existence and uniqueness of solution of free boundary problem with partially degenerate diffusion. Nonlinear Anal Real World Appl, 2020, 54: 103097

    MathSciNet  MATH  Google Scholar 

  30. Lui R. Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math Biosci, 1989, 93: 269–295

    MathSciNet  MATH  Google Scholar 

  31. Lutscher F, Pachepsky E, Lewis M A. The effect of dispersal patterns on stream populations. SIAM J Appl Math, 2005, 65: 1305–1327

    MathSciNet  MATH  Google Scholar 

  32. Ma M, Huang Z, Ou C. Speed of the traveling wave for the bistable Lotka-Volterra competition model. Nonlinearity, 2019, 32: 3143–3162

    MathSciNet  MATH  Google Scholar 

  33. Ma M, Ou C. Linear and nonlinear speed selection for mono-stable wave propagations. SIAM J Math Anal, 2019, 51: 321–345

    MathSciNet  MATH  Google Scholar 

  34. Meng Y, Yu Z, Hsu C-H. Entire solutions for a delayed nonlocal dispersal system with monostable nonlinearities. Nonlinearity, 2019, 32: 1206–1236

    MathSciNet  MATH  Google Scholar 

  35. Murray J D. Mathematical Biology. II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18. New York: Springer-Verlag, 2003

    MATH  Google Scholar 

  36. Shen W, Zhang A. Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J Differential Equations, 2010, 249: 747–795

    MathSciNet  MATH  Google Scholar 

  37. Sun Y-J, Zhang L, Li W-T, et al. Entire solutions in nonlocal monostable equations: Asymmetric case. Commun Pure Appl Anal, 2019, 18: 1049–1072

    MathSciNet  MATH  Google Scholar 

  38. Wang H. Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems. J Nonlinear Sci, 2011, 21: 747–783

    MathSciNet  MATH  Google Scholar 

  39. Wang H, Castillo-Chavez C. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete Contin Dyn Syst Ser B, 2012, 17: 2243–2266

    MathSciNet  MATH  Google Scholar 

  40. Wang H, Huang Z, Ou C. Speed selection for the wavefronts of the lattice Lotka-Volterra competition system. J Differential Equations, 2020, 268: 3880–3902

    MathSciNet  MATH  Google Scholar 

  41. Wang J-B, Li W-T, Sun J-W. Global dynamics and spreading speeds for a partially degenerate system with non-local dispersal in periodic habitats. Proc Roy Soc Edinburgh Sect A, 2018, 148: 849–880

    MathSciNet  MATH  Google Scholar 

  42. Wang X. Metastability and stability of patterns in a convolution model for phase transitions. J Differential Equations, 2002, 183: 434–461

    MathSciNet  MATH  Google Scholar 

  43. Weinberger H F. Long-time behavior of a class of biological models. SIAM J Math Anal, 1982, 13: 353–396

    MathSciNet  MATH  Google Scholar 

  44. Weinberger H F, Lewis M A, Li B. Analysis of linear determinacy for spread in cooperative models. J Math Biol, 2002, 45: 183–218

    MathSciNet  MATH  Google Scholar 

  45. Wu S-L, Hsu C-H. Existence of entire solutions for delayed monostable epidemic models. Trans Amer Math Soc, 2016, 368: 6033–6062

    MathSciNet  MATH  Google Scholar 

  46. Xu D, Zhao X-Q. Bistable waves in an epidemic model. J Dynam Differential Equations, 2005, 17: 219–247

    MathSciNet  MATH  Google Scholar 

  47. Xu W-B, Li W-T, Lin G. Nonlocal dispersal cooperative systems: Acceleration propagation among species. J Differential Equations, 2020, 268: 1081–1105

    MathSciNet  MATH  Google Scholar 

  48. Xu W-B, Li W-T, Ruan S. Fast propagation for reaction-diffusion cooperative systems. J Differential Equations, 2018, 265: 645–670

    MathSciNet  MATH  Google Scholar 

  49. Xu W-B, Li W-T, Ruan S. Spatial propagation in nonlocal dispersal Fisher-KPP equations. ArXiv:2007.15428, 2020

  50. Yang F-Y, Li W-T. Dynamics of a nonlocal dispersal SIS epidemic model. Commun Pure Appl Anal, 2017, 16: 781–797

    MathSciNet  MATH  Google Scholar 

  51. Yang F-Y, Li W-T, Ruan S. Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions. J Differential Equations, 2019, 267: 2011–2051

    MathSciNet  MATH  Google Scholar 

  52. Yi T, Zou X. Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems. SIAM J Math Anal, 2015, 47: 3005–3034

    MathSciNet  MATH  Google Scholar 

  53. Zhang L, Li W T, Wang Z C. Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel. Sci China Math, 2017, 60: 1791–1804

    MathSciNet  MATH  Google Scholar 

  54. Zhang L, Li W T, Wang Z C, et al. Entire solutions for nonlocal dispersal equations with bistable nonlinearity: Asymmetric case. Acta Math Sin Engl Ser, 2019, 35: 1771–1794

    MathSciNet  MATH  Google Scholar 

  55. Zhang L, Li W T, Wu S L. Multi-type entire solutions in a nonlocal dispersal epidemic model. J Dynam Differential Equations, 2016, 28: 189–224

    MathSciNet  MATH  Google Scholar 

  56. Zhao G, Ruan S. Spatial and temporal dynamics of a nonlocal viral infection model. SIAM J Appl Math, 2018, 78: 1954–1980

    MathSciNet  MATH  Google Scholar 

  57. Zhao X-Q, Wang W. Fisher waves in an epidemic model. Discrete Contin Dyn Syst Ser B, 2004, 4: 1117–1128

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by China Postdoctoral Science Foundation (Grant No. 2019M660047). The second author was supported by National Natural Science Foundation of China (Grant Nos. 11731005 and 11671180). The third author was supported by National Science Foundation of USA (Grant No. DMS-1853622). The authors thank the reviewers for their helpful comments and Dr. Ru Hou (Peking University) for her helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WB., Li, WT. & Ruan, S. Spatial propagation in an epidemic model with nonlocal diffusion: The influences of initial data and dispersals. Sci. China Math. 63, 2177–2206 (2020). https://doi.org/10.1007/s11425-020-1740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1740-1

Keywords

MSC(2010)

Navigation