Skip to main content
Log in

Nevanlinna theory through the Brownian motion

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the Nevanlinna theory using stochastic calculus, following the works of Davis (1975), Carne (1986) and Atsuji (1995, 2005, 2008 and 2017), etc. In particular, we give (another) proofs of the classical result of Nevanlinna for meromorphic functions and the result of Cartan-Ahlfors for holomorphic curves by using the probabilistic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atsuji A. Nevanlinna theory via stochastic calculus. J funct anal, 1995, 132: 473–510

    Article  MathSciNet  Google Scholar 

  2. Atsuji A. Brownian motion and value distribution theory of holomorphic maps and harmonic maps. Amer Math Soc Transl Ser 2, 2005, 215: 109–123

    MathSciNet  MATH  Google Scholar 

  3. Atsuji A. A second main theorem of Nevanlinna theory for meromorphic functions on complete Kähler manifolds. J Math Soc Japan, 2008, 2: 471–493

    Article  Google Scholar 

  4. Atsuji A. Value distribution of leaf wise holomorphic maps on complex laminations by hyperbolic Riemann surfaces. J Math Soc Japan, 2017, 2: 477–501

    Article  Google Scholar 

  5. Bass R F. Probabilistic Techniques in Analysis. New York: Springer, 1995

    MATH  Google Scholar 

  6. Carne T K. Brownian motion and Nevanlinna theory. Proc Lond Math Soc (3), 1986, 52: 349–348

    Article  MathSciNet  Google Scholar 

  7. Chung K L. Lectures from Markov Process to Brownian Motion. New York: Springer-Verlag, 1982

    Book  Google Scholar 

  8. Davis B. Picard’s theorem and Brownian motion. Trans Amer Math Soc, 1975, 213: 353–361

    MathSciNet  MATH  Google Scholar 

  9. Fujimoto H. Value Distribution Theory of the Gauss Map of Minimal Surfaces in ℝm. Aspects of Mathematics, vol. 21. Wiesbaden: Vieweg, 1993

    Google Scholar 

  10. Ito K, McKean Jr H P. Diffusion Process and Their Sample Paths. New York: Academic Press, 1965

    MATH  Google Scholar 

  11. Le Gall J F. Brownian Motion, Martingales, and Stochastic Calculus. Graduate Texts in Mathematics, vol. 274. New York: Springer, 2013

    Google Scholar 

  12. Revuz D D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer, 1991

    Book  Google Scholar 

  13. Ru M. Nevanlinna Theory and Its Relation to Diophantine Approximation. Singapore: World Scientific, 2001

    Book  Google Scholar 

  14. Ru M. The recent progress in Nevanlinna theory. J Jiangxi Norm Univ Nat Sci Ed, 2018, 42: 1–11

    MATH  Google Scholar 

Download references

Acknowledgements

The third author was supported by Simon Foundation of USA (Grant No. 531604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Ru.

Additional information

Dedicated to Professor Lo Yang on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., He, Y. & Ru, M. Nevanlinna theory through the Brownian motion. Sci. China Math. 62, 2131–2154 (2019). https://doi.org/10.1007/s11425-019-9548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-9548-y

Keywords

MSC(2010)

Navigation