Skip to main content
Log in

Infinite dimensional Cauchy-Kowalevski and Holmgren type theorems

  • Brief Reports
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to show Cauchy-Kowalevski and Holmgren type theorems with infinite number of variables. We adopt von Koch and Hilbert’s definition of analyticity of functions as monomial expansions. Our Cauchy-Kowalevski type theorem is derived by modifying the classical method of majorants. Based on this result, by employing some tools from abstract Wiener spaces, we establish our Holmgren type theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezanskiĭ Y. Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables. Translations of Mathematical Monographs. Providence: Amer Math Soc, 1986

    Google Scholar 

  2. Chaperon M. On the Cauchy-Kowalevski theorem. Enseign Math, 2009, 55: 359–371

    Article  MathSciNet  MATH  Google Scholar 

  3. Crandall M, Lions P. Hamilton-Jacobi equations in infinite dimensions, I: Uniqueness of viscosity solutions. J Funct Anal, 1985, 62: 379–396

    Article  MathSciNet  MATH  Google Scholar 

  4. Defant A, Maestre M, Prengel C. Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J Reine Angew Math, 2009, 634: 13–49

    MathSciNet  MATH  Google Scholar 

  5. Dineen S. Complex Analysis on Infinite-Dimensional Spaces. Springer Monographs in Mathematics. London: Springer-Verlag, 1999

    Google Scholar 

  6. Driver B. Probability Tools with Examples. http://www.math.ucsd.edu/~bdriver/280_13-14webs/280_lecture_notes.htm

  7. Fernique X. Intégrabilité des vecteurs gaussiens. C R Acad Sci Paris Sér A, 1970, 270: 1698–1699

    MathSciNet  MATH  Google Scholar 

  8. Fréchet M. Une définition fontionnelle des polynômes. Nouv Ann Math, 1909, 9: 145–130

    Google Scholar 

  9. Fréchet M. Sur les fonctionnelles continues. Ann Sci Ecole Norm Sup, 1910, 27: 193–216

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman A. A new proof and generalizations of the Cauchy-Kowalewski theorem. Trans Amer Math Soc, 1961, 98: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  11. Gâteaux R. Sur les fonctionnelles continues et les fonctionnelles analytiques. C R Acad Sci Paris Ser A, 1913, 157: 325–327

    MATH  Google Scholar 

  12. Gâteaux R. Fonctions d’une infinité des variables indépendantes. Bull Soc Math France, 1919, 47: 70–96

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodman V. A divergence theorem for Hilbert space. Trans Amer Math Soc, 1972, 164: 411–426

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross L. Potential theory on Hilbert space. J Funct Anal, 1967, 1: 123–181

    Article  MathSciNet  MATH  Google Scholar 

  15. Gross L. Abstract Wiener spaces. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. II. Contributions to Probability Theory. Berkeley: University of California Press, 1967, 31–42

    Google Scholar 

  16. Hedenmalm H. On the uniqueness theorem of Holmgren. Math Z, 2015, 281: 357–378

    Article  MathSciNet  MATH  Google Scholar 

  17. Hilbert D. Wesen und Ziele einer analysis der unendlichvielen unabhängigen Variablen. Rend Circ Mat Palermo, 1909, 27: 59–74

    Article  MATH  Google Scholar 

  18. Holmgren E. Über Systeme von linearen partiellen Differentialgleichungen. Öfversigt af Kongl. Vetenskaps-Academien Förhandlinger, 1901, 58: 91–103

    MATH  Google Scholar 

  19. Hörmander L. A remark on Holmgren’s uniqueness theorem. J Differential Geom, 1971/72, 6: 129–134

    Article  MathSciNet  MATH  Google Scholar 

  20. Hörmander L. A uniqueness theorem for second order hyperbolic differential equations. Comm Partial Differential Equations, 1992, 17: 699–714

    Article  MathSciNet  MATH  Google Scholar 

  21. John F. On linear partial differential equations with analytic coefficients: Unique continuation of data. Comm Pure Appl Math, 1949, 2: 209–253

    Article  MathSciNet  MATH  Google Scholar 

  22. Lascar B. Théorème de Cauchy-Kovalewsky et thorème d’unicité d’Holmgren pour des fonctions d’une infinité de variables. C R Acad Sci Paris Sér A-B, 1976, 282: A691–A694

    MATH  Google Scholar 

  23. Lascar B. Théorème de Cauchy-Kovalevsky et thorème d’unicité d’Holmgren pour des fonctions analytiques d’une infinité de variables. In: North-Holland Mathematics Studies, Advances in Holomorphy. Amsterdam-New York: North-Holland, 1979, 485–508

    Google Scholar 

  24. Lempert L. The Dolbeault complex in infinite dimensions, II. J Amer Math Soc, 1999, 12: 775–793

    Article  MathSciNet  MATH  Google Scholar 

  25. Mogilevskaja L. The analyticity of the solutions of differential equations in a Banach space. Dokl Akad Nauk SSSR, 1976, 228: 30–33

    MathSciNet  MATH  Google Scholar 

  26. Nirenberg L. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J Differential Geom, 1972, 6: 561–576

    Article  MathSciNet  MATH  Google Scholar 

  27. Nishida T. A note on a theorem of Nirenberg. J Differential Geom, 1977, 12: 629–633

    Article  MathSciNet  MATH  Google Scholar 

  28. Ovsjannikov L. Singular operator in the scale of Banach spaces. Dokl Akad Nauk SSSR, 1965, 163: 819–822

    MathSciNet  Google Scholar 

  29. Ryan R. Holomorphic mappings on 1. Trans Amer Math Soc, 1987, 302: 797–811

    MathSciNet  MATH  Google Scholar 

  30. Safonov M. The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space. Comm Pure Appl Math, 1995, 48: 629–637

    Article  MathSciNet  MATH  Google Scholar 

  31. Trèves F. An abstract nonlinear Cauchy-Kovalevska theorem. Trans Amer Math Soc, 1970, 150: 77–92

    Article  MathSciNet  MATH  Google Scholar 

  32. von Koch H. Sur les système d’ordie infinite d’equations differentielles. Öfversigt af Kongl. Svenska Vetenskaps-Akademiens Forhandlinger, 1899, 61: 395–411

    Google Scholar 

  33. Yamanaka T. A Cauchy-Kovalevskaja type theorem in the Gevrey class with a vector-valued time variable. Comm Partial Differential Equations, 1992, 17: 1457–1502

    Article  MathSciNet  MATH  Google Scholar 

  34. Zubelevich O. On the majorant method in the Cauchy-Kovalevskaya problem. Math Notes, 2001, 69: 329–339

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11501384). The second author was supported by National Natural Science Foundation of China (Grant No. 11221101), the NSFC-CNRS Joint Research Project (Grant No. 11711530142) and the PCSIRT from the Chinese Education Ministry (Grant No. IRT_16R53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhang, X. Infinite dimensional Cauchy-Kowalevski and Holmgren type theorems. Sci. China Math. 62, 1645–1656 (2019). https://doi.org/10.1007/s11425-019-9539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-9539-y

Keywords

MSC(2010)

Navigation