Skip to main content
Log in

The Christoffel problem by the fundamental solution of the Laplace equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The Christoffel problem is equivalent to the existence of convex solutions to the Laplace equation on the unit sphere \({{\mathbb S}^n}\). Necessary and sufficient conditions have been found by Firey (1967) and Berg (1969), by using the Green function of the Laplacian on the sphere. Expressing the Christoffel problem as the Laplace equation on the entire space ℝn+1, we observe that the second derivatives of the solution can be given by the fundamental solutions of the Laplace equation. Therefore we find new and simpler necessary and sufficient conditions for the solvability of the Christoffel problem. We also study the Lp extension of the Christoffel problem and provide sufficient conditions for the problem, for the case p ⩾ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov A D. Über die Frage nach der Existenz eines konvexen Körpers bei dem die Summe der Hauptkrümmungsradien eine gegebene positive Funcktion ist, welche die Bedingungen der Geschlossenheit genügt. Dokl Akad Nauk SSSR, 1937, 14: 59–60

    MATH  Google Scholar 

  2. Amrouche C, Girault V, Giroire J. Weighted Sobolev spaces for Laplace’s equation in ℝn. J Math Pures Appl (9), 1994, 73: 579–606

    MathSciNet  MATH  Google Scholar 

  3. Bahri A, Coron J M. The scalar-curvature problem on the standard three-dimensional sphere. J Funct Anal, 1991, 95: 106–172

    Article  MathSciNet  Google Scholar 

  4. Berg C. Corps convexes et potentiels sphériques (in French). Danske Vid Selsk Mat-Fys Medd, 1969, 37: 1–64

    MATH  Google Scholar 

  5. Busemann H. Convex Surfaces. Interscience Tracts in Pure and Applied Mathematics, No. 6. New York: Interscience Publishers, 1958

    Google Scholar 

  6. Chang S Y A, Yang P C. Prescribing Gaussian curvature on \({\cal Z}\). Acta Math, 1987, 159: 215–259

    Article  MathSciNet  Google Scholar 

  7. Chen C C, Lin C S. Prescribing scalar curvature on \({{\cal O}_2}\), I: A priori estimates. J Differential Geom, 2001, 57: 67–171

    Article  MathSciNet  Google Scholar 

  8. Chen W, Li C. A priori estimates for prescribing scalar curvature equations. Ann of Math (2), 1997, 145: 547–564

    Article  MathSciNet  Google Scholar 

  9. Christoffel E B. Ueber die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben. J Reine Angew Math, 1865, 64: 193–209

    MathSciNet  Google Scholar 

  10. Escobar J F, Schoen R M. Conformal metrics with prescribed scalar curvature. Invent Math, 1986, 86: 243–254

    Article  MathSciNet  Google Scholar 

  11. Firey W J. The determination of convex bodies from their mean radius of curvature functions. Mathematika, 1967, 14: 1–13

    Article  MathSciNet  Google Scholar 

  12. Goodey P, Yaskin V, Yaskina M. A Fourier transform approach to Christoffel’s problem. Trans Amer Math Soc, 2011, 363: 6351–6384

    Article  MathSciNet  Google Scholar 

  13. Guan P F, Ma X N. The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent Math, 2003, 151: 553–577

    Article  MathSciNet  Google Scholar 

  14. Guan P F, Xia C. Lp Christoffel-Minkowski problem: The case 1 < p < k + 1. Calc Var Partial Differential Equations, 2018, 57: 69

    Article  Google Scholar 

  15. Hilbert D. Grundzuüge einer allgemeinen Theorie der linearen Integralgleichungen. In: Integralgleichungen und Gleichungen mit unendlich vielen unbekannten. Teubner-Archiv zur Mathematik, vol. 11. Leipzig: Vieweg+Teubner Verlag, 1989, 8–171

    Chapter  Google Scholar 

  16. Hu C, Ma X N, Shen C. On the Christoffel-Minkowski problem of Firey’s p-sum. Calc Var Partial Differential Equations, 2004, 21: 137–155

    Article  MathSciNet  Google Scholar 

  17. Hurwitz A. Sur quelques applications géométriques des séries de Fourier. Ann Sci École Norm Sup (3), 1902, 19: 357–408

    Article  MathSciNet  Google Scholar 

  18. Kazdan J L, Warner F. Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann of Math (2), 1975, 101: 317–331

    Article  MathSciNet  Google Scholar 

  19. Pogorelov A V. On the question of the existence of a convex surface with a given sum of the principal radii of curvature (in Russian). Uspekhi Mat Nauk, 1953, 8: 127–130

    Google Scholar 

  20. Schneider R. Convex Bodies: The Brunn-Minkowski Theory, 2nd ed. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge: Cambridge University Press, 2014

    Google Scholar 

  21. Süss W. Bestimmung einer geschlossenen konvexen Fläche durch die Summe ihrer Hauptkrümmungsradien. Math Ann, 1933, 108: 143–148

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the One-Thousand-Young-Talents Program of China. The second author was supported by National Natural Science Foundation of China (Grant No. 11871345). The third author was supported by Australian Research Council (Grant Nos. DP170100929 and DP200101084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Jia Wang.

Additional information

In Memory of Professor Zhengguo Bai (1916–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QR., Wan, D. & Wang, XJ. The Christoffel problem by the fundamental solution of the Laplace equation. Sci. China Math. 64, 1599–1612 (2021). https://doi.org/10.1007/s11425-019-1674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1674-1

Keywords

MSC(2010)

Navigation