Skip to main content
Log in

Geometric Gibbs theory

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We extend the classical Gibbs theory for smooth potentials to the geometric Gibbs theory for certain continuous potentials. We study the existence and uniqueness and the compatibility of geometric Gibbs measures associated with these continuous potentials. We introduce a complex Banach manifold structure on the space of these continuous potentials as well as on the space of all geometric Gibbs measures. We prove that with this complex Banach manifold structure, the space is complete and, moreover, is the completion of the space of all smooth potentials as well as the space of all classical Gibbs measures. There is a maximum metric on the space, which is incomplete. We prove that the topology induced by the newly introduced complex Banach manifold structure and the topology induced by the maximal metric are the same. We prove that a geometric Gibbs measure is an equilibrium state, and the infimum of the metric entropy function on the space is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L V. Lectures on Quasiconformal Mappings. Mathematical Studies, vol. 10. Toronto-New York-London: D. Van Nostrand, 1966

    MATH  Google Scholar 

  2. Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Berlin: Springer-Verlag, 1975

    Book  Google Scholar 

  3. Cui G, Gardiner F, Jiang Y. Scaling functions for degree 2 circle endomorphisms. Contemp Math, 2004, 355: 147–163

    Article  MathSciNet  Google Scholar 

  4. Cui G, Jiang Y, Quas A. Scaling functions, Gibbs measures, and Teichmüller spaces of circle endomorphisms. Discrete Contin Dyn Syst, 1999, 3: 535–552

    Article  Google Scholar 

  5. Gardiner F. Approximation of infinite dimensional Teichmüller spaces. Trans Amer Math Soc, 1984, 282: 367–383

    MathSciNet  MATH  Google Scholar 

  6. Gardiner F. Teichmüller Theory and Quadratic Differentials. New York: John Wiley & Sons, 1987

    MATH  Google Scholar 

  7. Gardiner F, Jiang Y. Asymptotically affine and asymptotically conformal circle endomorphisms. RIMS Kôkyûroku Bessatsu, 2010, 17: 37–53

    MathSciNet  MATH  Google Scholar 

  8. Gardiner F, Sullivan D. Symmetric structures on a closed curve. Amer J Math, 1992, 114: 683–736

    Article  MathSciNet  Google Scholar 

  9. Hu H, Jiang M, Jiang Y. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete Contin Dyn Syst, 2008, 22: 215–234

    Article  MathSciNet  Google Scholar 

  10. Hu H, Jiang M, Jiang Y. Infimum of the metric entropy of volume preserving Anosov systems. Discrete Contin Dyn Syst, 2017, 37: 4767–4783

    Article  MathSciNet  Google Scholar 

  11. Hu J, Jiang Y, Wang Z. Kobayashi’s and Teichmüller’s metrics on the Teichmüller space of symmetric circle homeomorphisms. Acta Math Sin (Engl Ser), 2011, 27: 617–624

    Article  MathSciNet  Google Scholar 

  12. Jiang Y. Renormalization and Geometry in One-Dimensional and Complex Dynamics. Advanced Series in Nonlinear Dynamics, vol. 10. River Edge: World Scientific, 1996

    Book  Google Scholar 

  13. Jiang Y. A proof of the existence and simplicity of a maximal eigenvalue for Ruelle-Perron-Frobenius operators. Lett Math Phys, 1999, 48: 211–219

    Article  MathSciNet  Google Scholar 

  14. Jiang Y. Nanjing Lecture Notes in Dynamical Systems. Part One: Transfer Operators in Thermodynamical Formalism. http://qcpages.qc.cuny.edu/~yjiang/HomePageYJ/Download/JiangNJLectureIFM.pdf, 2000

  15. Jiang Y. Metric invariants in dynamical systems. J Dynam Differential Equations, 2005, 17: 51–71

    Article  MathSciNet  Google Scholar 

  16. Jiang Y. On a question of Katok in one-dimensional case. Discrete Contin Dyn Syst, 2009, 24: 1209–1213

    Article  MathSciNet  Google Scholar 

  17. Jiang Y. Differential rigidity and applications in one-dimensional dynamics. In: Dynamics, Games and Science I. Springer Proceedings in Mathematics, vol. 1. Berlin-Heidelberg: Springer, 2011, 487–502

    Chapter  Google Scholar 

  18. Jiang Y. Symmetric invariant measures. Contemp Math, 2012, 575: 211–218

    Article  MathSciNet  Google Scholar 

  19. Jiang Y. Kobayashi’s and Teichmüller’s metrics and Bers complex manifold structure on circle diffeomorphisms. Acta Math Sin (Engl Ser), 2020, 36: 245–272

    Article  MathSciNet  Google Scholar 

  20. Jiang Y, Ruelle D. Analyticity of the susceptibility function for unimodal Markovian maps of the interval. Nonlinearity, 2005, 18: 2447–2453

    Article  MathSciNet  Google Scholar 

  21. Keane M. Strongly mixing g-measures. Invent Math, 1972, 16: 309–324

    Article  MathSciNet  Google Scholar 

  22. Ledrappier F. Principe variationel et systemes dynamiques symboliques. Z Wahrscheinlichkeitstheorie Verw Gebiete, 1974, 30: 185–202

    Article  Google Scholar 

  23. Reimann M. Ordinary differential equations and quasiconformal mappings. Invent Math, 1976, 33: 247–270

    Article  MathSciNet  Google Scholar 

  24. Royden H. Automorphisms and isometries of Teichmuüller space. In: Advances in the Theory of Riemann Surfaces. Stony Brook Conference. Annals of Mathematics Studies, vol. 66. Princeton: Princeton University Press, 1971, 369–383

    Chapter  Google Scholar 

  25. Ruelle D. Statistical mechanics of a one-dimensional lattice gas. Comm Math Phys, 1968, 9: 267–278

    Article  MathSciNet  Google Scholar 

  26. Ruelle D. A measure associated with Axiom A attractors. Amer J Math, 1976, 98: 619–654

    Article  MathSciNet  Google Scholar 

  27. Ruelle D. Differentiating the absolutely continuous invariant measure of an interval map f with respect to f. Comm Math Phys, 2005, 258: 445–453

    Article  MathSciNet  Google Scholar 

  28. Sinai Y G. Markov partitions and C-diffeomorphisms. Funct Anal Appl, 1968, 2: 61–82

    Article  MathSciNet  Google Scholar 

  29. Sinai Y G. Gibbs measures in ergodic theory. Russian Math Surveys, 1972, 27: 21–69

    Article  MathSciNet  Google Scholar 

  30. Walters P. Ruelle’s operator theorem and (g-measures. Trans Amer Math Soc, 1975, 214: 375–387

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of USA (Grant No. DMS-1747905), the Simons Foundation (Grant No. 523341), Professional Staff Congress of the City University of New York Enhanced Award (Grant No. 62777-00 50) and National Natural Science Foundation of China (Grant No. 11571122). The author thanks his student John Adamski and colleague Sudeb Mitra for proofreading the abstract and the introduction of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunping Jiang.

Additional information

In Memory of Professor Shantao Liao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y. Geometric Gibbs theory. Sci. China Math. 63, 1777–1824 (2020). https://doi.org/10.1007/s11425-019-1638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1638-6

Keywords

MSC(2010)

Navigation