Skip to main content
Log in

Variational approach to Arnold diffusion

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Arnold diffusion was conjectured by Arnol’d (1964) as a typical phenomena of topological instability in classical mechanics. In this paper, we give a panorama of the researches on Arnold diffusion using the variational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math Surveys, 1963, 18: 85–192

    Article  MathSciNet  Google Scholar 

  2. Arnol’d V I. Instability of dynamical systems with several degrees of freedom (Instability of motions of dynamic system with five-dimensional phase space). Soviet Math, 1964, 5: 581–585

    MATH  Google Scholar 

  3. Arnol’d V I. Mathematical Methods of Classical Mechanics. New York: Springer, 1989

    Book  Google Scholar 

  4. Arnol’d V I. Mathematical problems in classical physics. In: Trends and Perspectives in Applied Mathematics. Applied Mathematical Sciences, vol. 100. New York: Springer, 1994, 1–20

    Google Scholar 

  5. Arnol’d V I. The stability problem and ergodic properties for classical dynamical systems. In: Proceedings of International Congress of Mathematicians. Berlin-Heidelberg: Springer, 2014, 107–113

    Google Scholar 

  6. Bangert V. Mather sets for twist maps and geodesics on tori. In: Dynamics Reported. Dynamics Reported, vol. 1. Wiesbaden: Vieweg+Teubner Verlag, 1988, 1–56

    Google Scholar 

  7. Bernard P. Symplectic aspects of Mather theory. Duke Math J, 2007, 136: 401–420

    MathSciNet  MATH  Google Scholar 

  8. Bernard P. The dynamics of pseudographs in convex Hamiltonian systems. J Amer Math Soc, 2008, 21: 615–669

    Article  MathSciNet  Google Scholar 

  9. Bernard P, Contreras G. A generic property of families of Lagrangian systems. Ann of Math (2), 2008, 167: 1099–1108

    Article  MathSciNet  Google Scholar 

  10. Bernard P, Kaloshin V, Zhang K. Arnold diffusion in arbitrary degrees of freedom and crumpled 3-dimensional normally hyperbolic invariant cylinders. Acta Math, 2017, 217: 1–79

    Article  Google Scholar 

  11. Cheng C-Q. Arnold diffusion in nearly integrable Hamiltonian systems. ArXiv:1207.4016, 2012. Permanent preprint. Decomposed and expanded into [12, 13, 20]

  12. Cheng C-Q. Uniform hyperbolicity of invariant cylinder. J Differential Geom, 2017, 106: 1–43

    Article  MathSciNet  Google Scholar 

  13. Cheng C-Q. Dynamics around the double resonance. Cambridge J Math, 2017, 5: 153–228

    Article  MathSciNet  Google Scholar 

  14. Cheng C-Q. The genericity of Arnold diffusion in nearly integerable Hamiltonian systems. Asian J Math, 2019, in press

  15. Cheng C-Q, Xue J. Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom. ArX-iv:1503.04153v2, 2015

  16. Cheng C-Q, Xue J. Order property and Modulus of Continuity of Weak KAM Solutions. Calc Var Partial Differential Equations, 2018, 57: 65

    Article  MathSciNet  Google Scholar 

  17. Cheng C-Q, Yan J. Existence of diffusion orbits in a priori unstable Hamiltonian systems. J Differential Geom, 2004, 67: 457–517

    Article  MathSciNet  Google Scholar 

  18. Cheng C-Q, Yan J. Arnold diffusion in Hamiltonian Systems: a priori Unstable Case. J Differential Geom, 2009, 82: 229–277

    Article  MathSciNet  Google Scholar 

  19. Cheng C-Q, Zhou M. Non-degeneracy of extremal points in multi-dimensional space. Sci China Math, 2015, 58: 2255–2260

    Article  MathSciNet  Google Scholar 

  20. Cheng C-Q, Zhou M. Hyperbolicity of minimal periodic orbits. Math Res Lett, 2016, 23: 685–705

    Article  MathSciNet  Google Scholar 

  21. Delshams A, de la Llave R, Seara T M. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model. Mem Amer Math Soc, 2006, 179: 844

    MathSciNet  MATH  Google Scholar 

  22. Delshams A, de la Llave R, Seara T M. Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Adv Math, 2008, 217: 1096–1153

    Article  MathSciNet  Google Scholar 

  23. Delshams A, de la Llave R, Seara T M. Instability of high dimensional hamiltonian systems: Multiple resonances do not impede diffusion. Adv Math, 2016, 294: 689–755

    Article  MathSciNet  Google Scholar 

  24. Delshams A, Huguet G. Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity, 2009, 22: 1997–2077

    Article  MathSciNet  Google Scholar 

  25. Fathi A. Weak KAM Theorem in Lagrangian Dynamics. Cambridge Studies in Adavnced Mathematics. Cambridge: Cambridge University Press, 2009

    Google Scholar 

  26. Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J, 1971, 21: 193–226

    Article  MathSciNet  Google Scholar 

  27. Gelfreich V, Turaev D. Arnold Diffusion in a priory chaotic Hamiltonian systems. ArXiv: 1406.2945, 2014

  28. Gidea M, Marco J-P. Diffusion along chains of normally hyperbolic cylinders. ArXiv: 1708.08314, 2017

  29. Hirsch M, Pugh C, Shub M. Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. New York: Springer-Verlag, 1977

    Book  Google Scholar 

  30. Kaloshin V, Zhang K. A strong form of Arnold diffusion for two and a half degrees of freedom. ArXiv:1212.1150v3, 2018

  31. Kaloshin V, Zhang K. Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion. Bull Soc Math France, 2019, in press

  32. Li X. On c-equivalence. Sci China Ser A, 2009, 52: 2389–2396

    Article  MathSciNet  Google Scholar 

  33. Li X, Cheng C-Q. Connecting orbits of autonomous Lagrangian systems. Nonlinearity, 2009, 23: 119–141

    Article  MathSciNet  Google Scholar 

  34. Mañé R. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 1996, 9: 273–310

    Article  MathSciNet  Google Scholar 

  35. Marco J-P. Chains of compact cylinders for cusp-generic nearly integrable convex systems on \(\mathbb{A}^{3}\). ArXiv:1602.02399, 2016

  36. Mather J. Action minimizing invariant measures for positive definite Lagrangian systems. Math Z, 1991, 207: 169–207

    Article  MathSciNet  Google Scholar 

  37. Mather J. Variational construction of connecting orbits. Ann Inst Fourier (Grenoble), 1993, 43: 1349–1386

    Article  MathSciNet  Google Scholar 

  38. Mather J. Arnold diffusion, I: Announcement of results. J Math Sci, 2004, 124: 5275–5289

    Article  MathSciNet  Google Scholar 

  39. Pöschel J. A lecture on the classical KAM theorem. Proc Sympos Pure Math, 2001, 69: 707–732

    Article  MathSciNet  Google Scholar 

  40. Treschev D V. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity, 2004, 17: 1803–1841

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11790272 and No.11631006). The second author was supported by National Natural Science Foundation of China (Grant No. 11790273) and Beijing Natural Science Foundation (Grant No. Z180003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Qing Cheng.

Additional information

Dedicated to Professor Lo Yang on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CQ., Xue, J. Variational approach to Arnold diffusion. Sci. China Math. 62, 2103–2130 (2019). https://doi.org/10.1007/s11425-019-1553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1553-3

Keywords

MSC(2010)

Navigation