Skip to main content
Log in

Sharp spectral gap for the Finsler p-Laplacian

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we give a sharp lower bound for the first (nonzero) p-eigenvalue on a compact Finsler manifold M without boundary or with convex boundary if the weighted Ricci curvature RicciN is bounded from below by a constant K in terms of the diameter d of a manifold, dimension, K, p and N. In particular, if RicciN is non-negative, then the first p-eigenvalue is bounded from below by \((p - 1){({\textstyle{{{\pi _p}} \over d}})^p}\), and the equality holds if and only if M is either a circle or a segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R A. Sobolev Spaces. San Diego: Academic Press, 1978

    Google Scholar 

  2. Bakry D, Qian Z. Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv Math, 2000, 155: 98–153

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao D, Chern S S, Shen Z. An Introduction to Riemann-Finsler Geometry. New York: Springer-Verlag, 2000

    Book  MATH  Google Scholar 

  4. Bonder J F, Rossi J D. Existence results for the p-Laplacian with nonlinear boundary conditions. J Math Anal Appl, 2001, 263: 195–223

    Article  MathSciNet  MATH  Google Scholar 

  5. del Pino M, Drabek P, Manasevich R. The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian. J Differential Equations, 1999, 151: 386–419

    Article  MathSciNet  MATH  Google Scholar 

  6. Došlý O, Řehák P. Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202. Amsterdam: Elsevier, 2005

    Google Scholar 

  7. Garcia-Azorero J, Peral I. Existence and non-uniqueness for the p-Laplacian: Nonlinear eigenvalues. Comm Partial Differential Equations, 1987, 12: 1389–1430

    Article  MathSciNet  MATH  Google Scholar 

  8. Ge Y, Shen Z. Eigenvalues and eigenfunctions of metric measure manifolds. Proc Lond Math Soc (3), 2001, 82: 725–746

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg G, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 2nd ed. Grundlehren der Mathematischen Wissenschaften, vol. 224. Berlin-New York: Springer, 1983

    Google Scholar 

  10. Hebey E. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics. New York: Courant Inst Math Sci, 2000

    Google Scholar 

  11. Kawai S, Nakauchi N. The first eigenvalue of the p-Laplacian on a compact Riemannian manifold. Nonlinear Anal, 2003, 55: 33–46

    Article  MathSciNet  MATH  Google Scholar 

  12. Kristyaly A, Rudas I J. Elliptic problems on the ball endowed with Funk-type metrics. Nonlinear Anal, 2015, 119: 199–208

    Article  MathSciNet  MATH  Google Scholar 

  13. Kröger P. On the spectral gap for compact manifolds. J Differential Geom, 1992, 36: 315–330

    Article  MathSciNet  MATH  Google Scholar 

  14. Lê A. Eigenvalue problems for the p-Laplacian. Nonlinear Anal, 2006, 64: 1057–1099

    Article  MathSciNet  MATH  Google Scholar 

  15. Lieberman G M. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal, 1988, 12: 1203–1219

    Article  MathSciNet  MATH  Google Scholar 

  16. Matei A-M. First eigenvalue for the p-Laplace operator. Nonlinear Anal, 2000, 39: 1051–1068

    Article  MathSciNet  MATH  Google Scholar 

  17. Naber A, Valtorta D. Sharp estimates on the first eigenvalue of the p-Laplacian with negative Ricci lower bound. Math Z, 2014, 277: 867–891

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohta S. Finsler interpolation inequalities. Calc Var Partial Differential Equations, 2009, 36: 211–249

    Article  MathSciNet  MATH  Google Scholar 

  19. Ohta S. Uniform convexity and smoothness, and their applications in Finsler geometry. Math Ann, 2009, 343: 669–699

    Article  MathSciNet  MATH  Google Scholar 

  20. Ohta S, Sturm K-T. Heat flow on Finsler manifolds. Comm Pure Appl Math, 2009, 62: 1386–1433

    Article  MathSciNet  MATH  Google Scholar 

  21. Ohta S, Sturm K-T. Bochner-Weitzenboöck formula and Li-Yau estimates on Finsler manifolds. Adv Math, 2014, 252: 429–448

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian Z, Zhang H, Zhu X. Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math Z, 2013, 273: 1175–1195

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen Z. The non-linear Laplacian for Finsler manifolds. In: The Theory of Finslerian Laplacians and Applications. Mathematics and Its Applications, vol. 459. Dordrecht: Springer, 1998, 187–197

    Chapter  Google Scholar 

  24. Shen Z. Lectures on Finsler Geometry. Singapore: World Scientific, 2001

    Book  MATH  Google Scholar 

  25. Tolksdorf P. Regularity for a more general class of quasilinear elliptic equations. J Differential Equations, 1984, 51: 126–150

    Article  MathSciNet  MATH  Google Scholar 

  26. Valtorta D. Sharp estimate on the first eigenvalue of the p-Laplacian. Nonlinear Anal, 2012, 75: 4974–4994

    Article  MathSciNet  MATH  Google Scholar 

  27. Walter W. Sturm-Liouville theory for the radial Δ p-operator. Math Z, 1998, 227: 175–185

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang G, Xia C. A sharp lower bound for the first eigenvalue on Finsler manifolds. Ann Inst H Poincaré Anal Non Linyeaire, 2013, 30: 983–996

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu B, Xin Y. Comparison theorems in Finsler geometry and their applications. Math Ann, 2007, 337: 177–196

    Article  MathSciNet  MATH  Google Scholar 

  30. Xia Q. A sharp lower bound for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature. Nonlinear Anal, 2015, 117: 189–199

    Article  MathSciNet  MATH  Google Scholar 

  31. Xia Q. On the first eigencone for the Finsler Laplacian. Bull Aust Math Soc, 2016, 94: 316–325

    Article  MathSciNet  MATH  Google Scholar 

  32. Yin S, He Q. The first eigenvalue of Finsler p-Laplacian. Differential Geom Appl, 2014, 35: 30–49

    Article  MathSciNet  MATH  Google Scholar 

  33. Yin S, He Q. The first eigenfunctions and eigenvalue of the p-Laplacian on Finsler manifolds. Sci China Math, 2016, 59: 1769–1794

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang F, Xia Q. Some Liouville-type theorems for harmonic functions on Finsler manifolds. J Math Anal Appl, 2014, 417: 979–995

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11671352) and Zhejiang Provincial National Science Foundation of China (Grant No. LY19A010021). The author expresses her sincere thanks to Professor Yibing Shen for his constant encouragement and support. The author also thanks the anonymous referees for their helpful comments, which have improved the presentations of the article and made it more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoling Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q. Sharp spectral gap for the Finsler p-Laplacian. Sci. China Math. 62, 1615–1644 (2019). https://doi.org/10.1007/s11425-018-9510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9510-5

Keywords

MSC(2010)

Navigation