Skip to main content
Log in

Dynamics of a rigid body in a two-dimensional incompressible perfect fluid and the zero-radius limit

  • Reviews
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this survey we report some recent results on the dynamics of a rigid body immersed in a two-dimensional incompressible perfect fluid, with an emphasis on the zero-radius limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glass O, Lacave C, Sueur F. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Bull Soc Math France, 2014, 142: 489–536

    Article  MathSciNet  MATH  Google Scholar 

  2. Glass O, Lacave C, Sueur F. On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity. Comm Math Phys, 2016, 341: 1015–1065

    Article  MathSciNet  MATH  Google Scholar 

  3. Glass O, Munnier A, Sueur F. Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid. Invent Math, 2018, 214: 171–287

    Article  MathSciNet  MATH  Google Scholar 

  4. Glass O, Sueur F. On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM J Math Anal, 2013, 44: 3101–3126

    Article  MathSciNet  MATH  Google Scholar 

  5. Glass O, Sueur F. Low regularity solutions for the two-dimensional “rigid body + incompressible Euler” system. Differential Integral Equations, 2014, 27: 625–642

    MathSciNet  MATH  Google Scholar 

  6. Glass O, Sueur F. Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Arch Ration Mech Anal, 2015, 218: 907–944

    Article  MathSciNet  MATH  Google Scholar 

  7. Houot J. Analyse mathématique des mouvements des rigides dans un fluide parfait. Thèse. Nancy: Université de Nancy 1, 2008

    Google Scholar 

  8. Houot J, Munnier A. On the motion and collisions of rigid bodies in an ideal fluid. Asymptot Anal, 2008, 56: 125–158

    MathSciNet  MATH  Google Scholar 

  9. Lamb H. Hydrodynamics, 6th ed. Cambridge: Cambridge University Press, 1993

    MATH  Google Scholar 

  10. Munnier A. Locomotion of deformable bodies in an ideal fluid: Newtonian versus Lagrangian formalisms. J Nonlinear Sci, 2009, 19: 665–715

    Article  MathSciNet  MATH  Google Scholar 

  11. Sedov L. Two-Dimensional Problems of Hydrodynamics and Aerodynamics. Moscow: Izdatel’stvo Nauka, 1980

    MATH  Google Scholar 

  12. Sueur F. Motion of a particle immersed in a two dimensional incompressible perfect fluid and point vortex dynamics. In: Particles in Flows. Cham: Birkhäuser, 2017, 139–216

    Chapter  Google Scholar 

  13. Turkington B. On the evolution of a concentrated vortex in an ideal fluid. Arch Ration Mech Anal, 1987, 97: 75–87

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche, Project IFSMACS (Grant No. ANR-15-CE40-0010), Project BORDS (Grant No. ANR-16-CE40-0027-01), Project SINGFLOWS (Grant No. ANR-18-CE40-0027-01), the Conseil Régionale d’Aquitaine (Grant No. 2015.1047.CP), the H2020-MSCA-ITN-2017 program Project ConFlex Grant ETN-765579 and the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Sueur.

Additional information

Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sueur, F. Dynamics of a rigid body in a two-dimensional incompressible perfect fluid and the zero-radius limit. Sci. China Math. 62, 1205–1218 (2019). https://doi.org/10.1007/s11425-018-9505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9505-8

Keywords

MSC(2010)

Navigation