Skip to main content
Log in

L1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove Poincaré and Sobolev inequalities for differential forms in L1(ℝn). The singular integral estimates that it is possible to use for Lp, p > 1, are replaced here with inequalities which go back to Bourgain and Brezis (2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi A, Franchi B, Pansu P. Poincaré and Sobolev inequalities for differential forms in Heisenberg groups. ArXiv: 1711.09786, 2017

    MATH  Google Scholar 

  2. Baldi A, Franchi B, Pansu P. L 1-Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups. ArXiv:1902.04819, 2019

    Google Scholar 

  3. Benilan P, Brezis H, Crandall M G. A semilinear equation in L 1(ℝN). Ann Sc Norm Super Pisa Cl Sci (5), 1975, 2: 523–555

    MATH  Google Scholar 

  4. Bourgain J, Brezis H. New estimates for elliptic equations and Hodge type systems. J Eur Math Soc (JEMS), 2007, 9: 277–315

    Article  MathSciNet  MATH  Google Scholar 

  5. Federer H, Fleming W H. Normal and integral currents. Ann of Math (2), 1960, 72: 458–520

    Article  MathSciNet  MATH  Google Scholar 

  6. Folland G B. Lectures on Partial Differential Equations. Tata Institute of Fundamental Research. Lectures on Mathematics and Physics, vol. 70. Berlin: Springer-Verlag, 1983

  7. Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton: Princeton University Press, 1982

  8. Franchi B, Gallot S, Wheeden R L. Sobolev and isoperimetric inequalities for degenerate metrics. Math Ann, 1994, 300: 557–571

    Article  MathSciNet  MATH  Google Scholar 

  9. Franchi B, Lu G, Wheeden R L. Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann Inst Fourier (Grenoble), 1995, 45: 577–604

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwaniec T, Lutoborski A. Integral estimates for null Lagrangians. Arch Ration Mech Anal, 1993, 145: 25–79

    Article  MathSciNet  MATH  Google Scholar 

  11. Jost J. Riemannian Geometry and Geometric Analysis, 5th ed. Berlin: Springer-Verlag, 2008

    MATH  Google Scholar 

  12. Lanzani L, Stein E M. A note on div curl inequalities. Math Res Lett, 2005, 12: 57–61

    Article  MathSciNet  MATH  Google Scholar 

  13. Long R L, Nie F S. Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators. In: Lecture Notes in Mathematics, vol. 1494. Berlin: Springer, 1991, 131–141

    Article  MATH  Google Scholar 

  14. Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton: Princeton University Press, 1993

  15. Van Schaftingen J. Limiting Bourgain-Brezis estimates for systems of linear differential equations: Theme and variations. J Fixed Point Theory Appl, 2014, 15: 273–297

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author and the second author were supported by Funds for Selected Research Topics from the University of Bologna, MAnET Marie Curie Initial Training Network, GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica “F. Severi”), Italy, and PRIN (Progetti di ricerca di Rilevante Interesse Nazionale) of the MIUR (Ministero dell’Istruzione dell’Università e della Ricerca), Italy. The third author was supported by MAnET Marie Curie Initial Training Network, Agence Nationale de la Recherche (Grant Nos. ANR-10-BLAN 116-01 GGAA and ANR-15-CE40-0018 SRGI), and thanks the hospitality of Isaac Newton Institute, of EPSRC (Engineering and Physical Sciences Research Council) (Grant No. EP/K032208/1) and Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Franchi.

Additional information

Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, A., Franchi, B. & Pansu, P. L1-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces. Sci. China Math. 62, 1029–1040 (2019). https://doi.org/10.1007/s11425-018-9498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9498-8

Keywords

MSC(2010)

Navigation