Skip to main content
Log in

Mehler’s formula and functional calculus

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We show that Mehler’s formula can be used to handle several formulas involving the quantization of singular Hamiltonians. In particular, we diagonalize in the Hermite basis the Weyl quantization of the characteristic function of several domains of the phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amour L, Jager L, Nourrigat J. Lower bounds for pseudodifferential operators with a radial symbol. J Math Pures Appl (9), 2015, 103: 1157–1162

    Article  MathSciNet  MATH  Google Scholar 

  2. Askey R, Gasper G. Positive Jacobi polynomial sums. II. Amer J Math, 1976, 98: 709–737

    Article  MathSciNet  MATH  Google Scholar 

  3. Feldheim E. Développments en série de polynomes d’Hermite et de Laguerre á l’aide des transformations de Gauss et de Henkel. III. Proc Kon Ned Akad Wet, 1940, 43: 379–386

    MathSciNet  MATH  Google Scholar 

  4. Flandrin P. Maximum signal energy concentration in a time-frequency domain. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 1988, 2176–2179

    Google Scholar 

  5. Flandrin P. Time-Frequency/Time-Scale Analysis. Wavelet Analysis and Its Applications, vol. 10. San Diego: Academic Press, 1999

  6. Hlawatsch F, Flandrin P. The interference structure of the Wigner distribution and related time-frequency signal representations. In: The Wigner Distribution. Amsterdam: Elsevier, 1997, 59–133

    Google Scholar 

  7. Hörmander L. Symplectic classiffication of quadratic forms, and general Mehler formulas. Math Z, 1995, 219: 413–449

    Article  MathSciNet  MATH  Google Scholar 

  8. Hörmander L. The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Berlin: Springer, 2007

    Google Scholar 

  9. Lerner N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Pseudo-Differential Operators Theory and Applications, vol. 3. Basel: Birkhäuser Verlag, 2010

  10. Lieb E H, Ostrover Y. Localization of multidimensional Wigner distributions. J Math Phys, 2010, 51: 102101

    Article  MathSciNet  MATH  Google Scholar 

  11. Unterberger A. Oscillateur harmonique et opérateurs pseudo-différentiels. Ann Inst Fourier (Grenoble), 1979, 29: 201–221

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Lerner.

Additional information

Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, N. Mehler’s formula and functional calculus. Sci. China Math. 62, 1143–1166 (2019). https://doi.org/10.1007/s11425-018-9496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9496-6

Keywords

MSC(2010)

Navigation