Abstract
We show that Mehler’s formula can be used to handle several formulas involving the quantization of singular Hamiltonians. In particular, we diagonalize in the Hermite basis the Weyl quantization of the characteristic function of several domains of the phase space.
Similar content being viewed by others
References
Amour L, Jager L, Nourrigat J. Lower bounds for pseudodifferential operators with a radial symbol. J Math Pures Appl (9), 2015, 103: 1157–1162
Askey R, Gasper G. Positive Jacobi polynomial sums. II. Amer J Math, 1976, 98: 709–737
Feldheim E. Développments en série de polynomes d’Hermite et de Laguerre á l’aide des transformations de Gauss et de Henkel. III. Proc Kon Ned Akad Wet, 1940, 43: 379–386
Flandrin P. Maximum signal energy concentration in a time-frequency domain. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 1988, 2176–2179
Flandrin P. Time-Frequency/Time-Scale Analysis. Wavelet Analysis and Its Applications, vol. 10. San Diego: Academic Press, 1999
Hlawatsch F, Flandrin P. The interference structure of the Wigner distribution and related time-frequency signal representations. In: The Wigner Distribution. Amsterdam: Elsevier, 1997, 59–133
Hörmander L. Symplectic classiffication of quadratic forms, and general Mehler formulas. Math Z, 1995, 219: 413–449
Hörmander L. The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Berlin: Springer, 2007
Lerner N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Pseudo-Differential Operators Theory and Applications, vol. 3. Basel: Birkhäuser Verlag, 2010
Lieb E H, Ostrover Y. Localization of multidimensional Wigner distributions. J Math Phys, 2010, 51: 102101
Unterberger A. Oscillateur harmonique et opérateurs pseudo-différentiels. Ann Inst Fourier (Grenoble), 1979, 29: 201–221
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Professor Jean-Yves Chemin on the Occasion of His 60th Birthday
Rights and permissions
About this article
Cite this article
Lerner, N. Mehler’s formula and functional calculus. Sci. China Math. 62, 1143–1166 (2019). https://doi.org/10.1007/s11425-018-9496-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11425-018-9496-6