Skip to main content
Log in

Primes in arithmetic progressions with friable indices

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the number π(x, y; q, a) of primes px such that pa (mod q) and (pa)/q is free of prime factors greater than y. Assuming a suitable form of Elliott-Halberstam conjecture, it is proved that π(x, y; q, a) is asymptotic to ρ(log(x/q)/log y)π(x)/φ(q) on average, subject to certain ranges of y and q, where ρ is the Dickman function. Moreover, unconditional upper bounds are also obtained via sieve methods. As a typical application, we may control more effectively the number of shifted primes with large prime factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombieri E, Friedlander J B, Iwaniec H. Primes in arithmetic progressions to large moduli. Acta Math, 1986, 156: 203–251

    Article  MathSciNet  Google Scholar 

  2. Chen F-J, Chen Y-G. On the largest prime factor of shifted primes. Acta Math Sin (Engl Ser), 2017, 33: 377–382

    Article  MathSciNet  Google Scholar 

  3. Chen J R. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci Sinica, 1973, 16: 157–176

    MathSciNet  MATH  Google Scholar 

  4. Elliott P D T A, Halberstam H. A conjecture in prime number theory. In: Symposia Mathematica, vol. IV (INDAM, Rome, 1968/69). London: Academic Press, 1970

    MATH  Google Scholar 

  5. Feng B, Wu J. On the density of shifted primes with large prime factors. Sci China Math, 2018, 61: 83–94

    Article  MathSciNet  Google Scholar 

  6. Fouvry É, Théorème de Brun-Titchmarsh: Application au théorème de Fermat. Invent Math, 1985, 79: 383–407

  7. Fouvry É, Iwaniec H. Primes in arithmetic progressions. Acta Arith, 1983, 42: 197–218

    Article  MathSciNet  Google Scholar 

  8. Fouvry É, Tenenbaum G. Entiers sans grand facteur premier en progressions arithmatiques. Proc London Math Soc, 1991, 63: 449–494

    Article  MathSciNet  Google Scholar 

  9. Fouvry É, Tenenbaum G. Répartition statistique des entiers sans grand facteur premier dans les progressions arithm étiques. Proc London Math Soc, 1996, 72: 481–514

    Article  MathSciNet  Google Scholar 

  10. Friedlander J B, Granville A. Limitations to the equi-distribution of primes, I. Ann of Math (2), 1989, 129: 363–382

    Article  MathSciNet  Google Scholar 

  11. Friedlander J B, Iwaniec H. The Brun-Titchmarsh theorem. In: Analytic Number Theory. London Mathematical Society Lecture Note Series, 247. Cambridge: Cambridge University Press, 1997, 85–93

    Book  Google Scholar 

  12. Granville A. Smooth numbers: Computational number theory and beyond. Algorithmic Number Theory, 2008, 44: 267–323

    MathSciNet  MATH  Google Scholar 

  13. Hildebrand A. On the number of positive integers 6 x and free of prime factors > y. J Number Theory, 1986, 22: 289–307

    Article  MathSciNet  Google Scholar 

  14. Hildebrand A, Tenenbaum G. Integers without large prime factors. J Theor Nombres Bordeaux, 1993, 5: 411–484

    Article  MathSciNet  Google Scholar 

  15. Hooley C. On the Brun-Titchmarsh theorem. J Reine Angew Math, 1972, 255: 60–79

    MathSciNet  MATH  Google Scholar 

  16. Iwaniec H. Primes of the type ϕ(x, y) + A where ϕ is a quadratic form. Acta Arith, 1972, 21: 203–234

    Article  MathSciNet  Google Scholar 

  17. Iwaniec H. A new form of the error term in the linear sieve. Acta Arith, 1980, 37: 307–320

    Article  MathSciNet  Google Scholar 

  18. Iwaniec H. On the Brun-Titchmarsh theorem. J Math Soc Japan, 1982, 34: 95–123

    Article  MathSciNet  Google Scholar 

  19. Lachand A, Tenenbaum G. Note sur les valeurs moyennes criblées de certaines fonctions arithmétiques. Quart J Math, 2015, 66: 245–250

    MATH  Google Scholar 

  20. Luca F, Menares R, Pizarro-Madariaga A. On shifted primes with large prime factors and their products. Bull Belg Math Soc Simon Stevin, 2015, 22: 39–47

    MathSciNet  MATH  Google Scholar 

  21. Montgomery H L, Vaughan R C. The large sieve. Mathematika, 1973, 20: 119–134

    Article  MathSciNet  Google Scholar 

  22. Motohashi Y. On some improvements of the Brun-Titchmarsh theorem. J Math Soc Japan, 1974, 26: 306–323

    Article  MathSciNet  Google Scholar 

  23. Motohashi Y. An induction principle for the generalization of Bombieri’s prime number theorem. Proc Japan Acad, 1976, 52: 273–275

    Article  MathSciNet  Google Scholar 

  24. Motohashi Y, Pintz J. A smoothed GPY sieve. Bull London Math Soc, 2008, 40: 298–310

    Article  MathSciNet  Google Scholar 

  25. Norton K K. Numbers with Small Prime Factors and the Least k-th Power Non Residue. Memoirs of the American Mathematical Society, 106. Providence: Amer Math Soc, 1971

    Google Scholar 

  26. Pomerance C. Popular values of Euler’s function. Mathematika, 1980, 27: 84–89

    Google Scholar 

  27. Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Translated from the second French edition (1995) by Thomas C B. Cambridge Studies in Advanced Mathematics, 46. Cambridge: Cambridge University Press, 1995

    MATH  Google Scholar 

  28. Tenenbaum G, Wu J. Moyennes de certaines fonctions multiplicatives sur les entiers friables. J Reine Angew Math, 2003, 564: 119–167

    MathSciNet  MATH  Google Scholar 

  29. van Lint J H, Richert H-E. On primes in arithmetic progressions. Acta Arith, 1965, 11: 209–216

    Article  MathSciNet  Google Scholar 

  30. Vaughan R C. A new iterative method in Waring problem. Acta Math, 1989, 162: 1–71

    Article  MathSciNet  Google Scholar 

  31. Wang Z. Autour des plus grands facteurs premiers d’entiers consecutifs voisins d’un entier crible. Quart J Math, 2018, 69: 995–1013

    MathSciNet  MATH  Google Scholar 

  32. Wolke D. Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen, II. Math Ann, 1973, 204: 145–153

    Google Scholar 

  33. Wu J, Xi P. Arithmetic exponent pairs for algebraic trace functions and applications. ArXiv:1603.07060, 2016

    Google Scholar 

  34. Zhang Y. Bounded gaps between primes. Ann of Math (2), 2014, 179: 1121–1174

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors were supported by the Programme de Recherche Conjoint CNRS-NSFC (Grant No. 1457). The first author was supported by National Natural Science Foundation of China (Grant No. 11531008), the Ministry of Education of China (Grant No. IRT16R43), and the Taishan Scholar Project of Shandong Province. The third author was supported by National Natural Science Foundation of China (Grant No. 11601413) and NSBRP of Shaanxi Province (Grant No. 2017JQ1016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wu, J. & Xi, P. Primes in arithmetic progressions with friable indices. Sci. China Math. 63, 23–38 (2020). https://doi.org/10.1007/s11425-018-9480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9480-6

Keywords

MSC(2010)

Navigation