Skip to main content
Log in

Large deviation principle for a class of SPDE with locally monotone coefficients

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This work aims to prove the large deviation principle for a class of stochastic partial differential equations with locally monotone coefficients under the extended variational framework, which generalizes many previous works. Using stochastic control and the weak convergence approach, we prove the Laplace principle, which is equivalent to the large deviation principle in our framework. Instead of assuming compactness of the embedding in the corresponding Gelfand triple or finite dimensional approximation of the diffusion coefficient in some existing works, we only assume some temporal regularity in the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azencott R. Grandes deviations et applications. Ecole d’Eté de Probabilités de Saint-Flour VII. Lecture Notes in Mathematics, vol. 774. New York: Springer, 1980

    MATH  Google Scholar 

  2. Bao J, Yuan C. Large deviations for neutral functional SDEs with jumps. Stochastics, 2015, 87: 48–70

    MathSciNet  MATH  Google Scholar 

  3. Bessaih H, Millet A. Large deviations and the zero viscosity limit for 2D stochastic Navier-Stokes equations with free boundary. SIAM J Math Anal, 2012, 44: 1861–1893

    MathSciNet  MATH  Google Scholar 

  4. Budhiraja A, Chen J, Dupuis P. Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stochastic Process Appl, 2013, 123: 523–560

    MathSciNet  MATH  Google Scholar 

  5. Budhiraja A, Dupuis P. A variational representation for positive functionals of infinite dimensional Brownian motion. Probab Math Statist, 2000, 20: 39–61

    MathSciNet  MATH  Google Scholar 

  6. Budhiraja A, Dupuis P, Maroulas V. Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab, 2008, 36: 1390–1420

    MathSciNet  MATH  Google Scholar 

  7. Brzeźniak Z, Liu W, Zhu J. Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise. Nonlinear Anal Real World Appl, 2014, 17: 283–310

    MathSciNet  MATH  Google Scholar 

  8. Cai Y, Huang J, Maroulas V. Large deviations of mean-field stochastic differential equations with jumps. Statist Probab Lett, 2015, 96: 1–9

    MathSciNet  MATH  Google Scholar 

  9. Cerrai S, Röckner M. Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann Probab, 2004, 32: 1100–1139

    MathSciNet  MATH  Google Scholar 

  10. Chen Y, Gao H. Well-posedness and large deviations for a class of SPDEs with Lévy noise. J Differential Equations, 2017, 263: 5216–5252

    MathSciNet  MATH  Google Scholar 

  11. Chow P L. Large deviation problem for some parabolic Ito equations. Comm Pure Appl Math, 1992, 45: 97–120

    MathSciNet  MATH  Google Scholar 

  12. Chueshov I, Millet A. Stochastic 2D hydrodynamical type systems: Well posedness and large deviations. Appl Math Optim, 2010, 61: 379–420

    MathSciNet  MATH  Google Scholar 

  13. Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992

    Google Scholar 

  14. Deck T, Kruse S, Potthoff J, et al. White noise approach to stochastic partial differential equations. In: Stochastic Partial Differential Equations and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 227. New York: Dekker, 2002, 183–195

    MATH  Google Scholar 

  15. Dembo A, Zeitouni O. Large Deviations Techniques and Applications. New York: Springer-Verlag, 2000

    MATH  Google Scholar 

  16. Dong Z, Xiong J, Zhai J, et al. A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises. J Funct Anal, 2017, 272: 227–254

    MathSciNet  MATH  Google Scholar 

  17. Dong Z, Zhai J, Zhang R. Large deviation principles for 3D stochastic primitive equations. J Differential Equations, 2017, 263: 3110–3146

    MathSciNet  MATH  Google Scholar 

  18. Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. I. Comm Pure Appl Math, 1975, 28: 1–47

    MathSciNet  MATH  Google Scholar 

  19. Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. II. Comm Pure Appl Math, 1975, 28: 279–301

    MathSciNet  MATH  Google Scholar 

  20. Donsker M D, Varadhan S R S. Asymptotic evaluation of certain Markov process expectations for large time. III. Comm Pure Appl Math, 1976, 29: 389–461

    MathSciNet  MATH  Google Scholar 

  21. Dupuis P, Ellis R. A Weak Convergence Approach to the Theory of Large Deviations. New York: Wiley, 1997

    MATH  Google Scholar 

  22. Feng J, Kurtz T. Large Deviations of Stochastic Processes. Mathematical Surveys and Monographs. Providence: Amer Math Soc, 2006

    MATH  Google Scholar 

  23. Foondun M, Setayeshgar L. Large deviations for a class of semilinear stochastic partial differential equations. Statist Probab Lett, 2017, 121: 143–151

    MathSciNet  MATH  Google Scholar 

  24. Frehse J, Ruzicka M. Non-homogeneous generalized Newtonian fluids. Math Z, 2008, 260: 355–375

    MathSciNet  MATH  Google Scholar 

  25. Freidlin M I. Random perturbations of reaction-diffusion equations: The quasi-deterministic approximations. Trans Amer Math Soc, 1988, 305: 665–697

    MathSciNet  MATH  Google Scholar 

  26. Freidlin M I, Wentzell A D. Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. New York: Springer-Verlag, 1984

    MATH  Google Scholar 

  27. Holden H, Øksendal B, Ubøe J, et al. Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach. Boston: Birkhäuser, 1996

    MATH  Google Scholar 

  28. Krylov N V, Rozovskii B L. Stochastic evolution equations. Ser Sovremennye Probl Mat, 1979, 14: 71–146

    MathSciNet  Google Scholar 

  29. Li Y, Xie Y, Zhang X. Large deviation principle for stochastic heat equation with memory. Discrete Contin Dyn Syst, 2015, 35: 5221–5237

    MathSciNet  MATH  Google Scholar 

  30. Liu W. Large deviations for stochastic evolution equations with small multiplicative noise. Appl Math Optim, 2010, 61: 27–56

    MathSciNet  MATH  Google Scholar 

  31. Liu W, Röckner M. SPDE in Hilbert space with locally monotone coefficients. J Funct Anal, 2010, 259: 2902–2922

    MathSciNet  MATH  Google Scholar 

  32. Liu W, Röckner M. Local and global well-posedness of SPDE with generalized coercivity conditions. J Differential Equations, 2013, 254: 725–755

    MathSciNet  MATH  Google Scholar 

  33. Liu W, Röckner M. Stochastic Partial Differential Equations: An Introduction. Berlin: Springer, 2015

    MATH  Google Scholar 

  34. Liu W, Röockner M, Zhu X C. Large deviation principles for the stochastic quasi-geostrophic equations. Stochastic Process Appl, 2013, 123: 3299–3327

    MathSciNet  MATH  Google Scholar 

  35. Liu W, Wang F Y. Harnack inequality and strong Feller property for stochastic fast diffusion equations. J Math Anal Appl, 2008, 342: 651–662

    MathSciNet  MATH  Google Scholar 

  36. Malek J, Necas J, Rokyta M, et al. Weak and Measure-Valued Solutions to Evolutionary PDEs. London: Chapman & Hall, 1996

    MATH  Google Scholar 

  37. Peszat S. Large deviation principle for stochastic evolution equations. Probab Theory Related Fields, 1994, 98: 113–136

    MathSciNet  MATH  Google Scholar 

  38. Prévôt C, Röckner M. A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Berlin: Springer, 2007

    MATH  Google Scholar 

  39. Pukhalskii A A. On the theory of large deviations. Theory Probab Appl, 1993, 38: 490–497

    MathSciNet  Google Scholar 

  40. Ren J, Röckner M, Wang F Y. Stochastic generalized porous media and fast diffusion equations. J Differential Equations, 2007, 238: 118–152

    MathSciNet  MATH  Google Scholar 

  41. Ren J, Zhang X. Freidlin-Wentzell’s Large Deviations for Stochastic Evolution Equations. J Funct Anal, 2008, 254: 3148–3172

    MathSciNet  MATH  Google Scholar 

  42. Röckner M, Schmuland B, Zhang X. Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions. Condensed Matter Physics, 2008, 54: 247–259

    Google Scholar 

  43. Röckner M, Wang F Y, Wu L. Large deviations for stochastic generalized porous media equations. Stochastic Process Appl, 2006, 116: 1677–1689

    MathSciNet  MATH  Google Scholar 

  44. Röckner M, Zhang T. Stochastic 3D tamed Navier-Stokes equations: Existence, uniqueness and small time large deviation principles. J Differential Equations, 2012, 252: 716–744

    MathSciNet  MATH  Google Scholar 

  45. Röckner M, Zhang X, Zhang T. Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl Math Optim, 2010, 61: 267–285

    MathSciNet  MATH  Google Scholar 

  46. Sritharan S S, Sundar P. Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stochastic Process Appl, 2006, 116: 1636–1659

    MathSciNet  MATH  Google Scholar 

  47. Stroock D W. An Introduction to the Theory of Large Deviations. New York: Spring-Verlag, 1984

    MATH  Google Scholar 

  48. Varadhan S R S. Asymptotic probabilities and differential equations. Comm Pure Appl Math, 1966, 19: 261–286

    MathSciNet  MATH  Google Scholar 

  49. Varadhan S R S. Large Deviations and Applications. Philadelphia: SIAM, 1984

    MATH  Google Scholar 

  50. Walsh J B. An introduction to stochastic partial differential equations. In: Ecole d’Ete de Probabilite de Saint-Flour XIV. Lecture Notes in Mathematics, vol. 1180. Berlin: Springer, 1986, 265–439

    Google Scholar 

  51. Xiong J, Zhai J. Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli, 2018, 24: 2842–2874

    MathSciNet  MATH  Google Scholar 

  52. Zeidler E. Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators. New York: Springer-Verlag, 1990

    MATH  Google Scholar 

  53. Zhai J, Zhang T. Large deviations for stochastic models of two-dimensional second grade fluids. Appl Math Optim, 2017, 75: 471–498

    MathSciNet  MATH  Google Scholar 

  54. Zhang X. On stochastic evolution equations with non-Lipschitz coefficients. Stoch Dyn, 2009, 9: 549–595

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11501147, 11501509, 11822106 and 11831014), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160004), the QingLan Project and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors are grateful to the anonymous referees for their careful reading of the manuscript and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Tao, C. & Zhu, J. Large deviation principle for a class of SPDE with locally monotone coefficients. Sci. China Math. 63, 1181–1202 (2020). https://doi.org/10.1007/s11425-018-9440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9440-3

Keywords

MSC(2010)

Navigation