Skip to main content
Log in

Simple zero property of some holomorphic functions on the moduli space of tori

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We prove that some holomorphic functions on the moduli space of tori have only simple zeros. Instead of computing the derivative with respect to the moduli parameter τ, we introduce a conceptual proof by applying Painlevé VI equation. As an application of this simple zero property, we obtain the smoothness of the degeneracy curves of trivial critical points for some multiple Green function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babich M V, Bordag L A. Projective differential geometrical structure of the Painlevé equations. J Differential Equations, 1999, 157: 452–485

    Article  MathSciNet  Google Scholar 

  2. Brezhnev Y V. Non-canonical extension of ϑ-functions and modular integrability of ϑ-constants. Proc Roy Soc Edin-burgh Sect A, 2013, 143: 689–738

    Article  MathSciNet  Google Scholar 

  3. Chai C L, Lin C S, Wang C L. Mean field equations, Hyperelliptic curves, and Modular forms: I. Cambridge J Math, 2015, 3: 127–274

    Article  MathSciNet  Google Scholar 

  4. Chen Z, Kuo T J, Lin C S. Hamiltonian system for the elliptic form of Painlevé VI equation. J Math Pures Appl (9), 2016, 106: 546–581

    Article  MathSciNet  Google Scholar 

  5. Chen Z, Kuo T J, Lin C S. Painlevé VI equation, modular forms and application. Preprint, 2017

    Google Scholar 

  6. Chen Z, Kuo T J, Lin C S. The geometry of generalized Lamé equation, II: Existence of pre-modular forms. ArX-iv:1807.07745v1, 2018

    Google Scholar 

  7. Chen Z, Kuo T J, Lin C S, et al. Green function, Painlevé VI equation and Eisenstein series of weight one. J Differential Geom, 2018, 108: 185–241

    Article  MathSciNet  Google Scholar 

  8. Chen Z, Lin C S. Critical points of the classical Eisenstein series of weight two. J Differential Geom, 2019, in press

    Google Scholar 

  9. Dahmen S. Counting integral Lamé equations by means of dessins d’enfants. Trans Amer Math Soc, 2007, 359: 909–922

    Article  MathSciNet  Google Scholar 

  10. Dubrovin B, Mazzocco M. Monodromy of certain Painlevé-VI transcendents and re ection groups. Invent Math, 2000, 141: 55–147

    Article  MathSciNet  Google Scholar 

  11. Gromak V, Laine I, Shimomura S. Painlevé Differential Equations in the Complex Plane. De Gruyter Studies in Mathematics, vol.28. Berlin: Walter de Gruyter, 2002

    Google Scholar 

  12. Hitchin N J. Twistor spaces, Einstein metrics and isomonodromic deformations. J Differential Geom, 1995, 42: 30–112

    Article  MathSciNet  Google Scholar 

  13. Iwasaki K, Kimura H, Shimomura S, et al. From Gauss to Painlevé: A Modern Theory of Special Functions. Berlin: Springer, 1991

    Book  Google Scholar 

  14. Lin C S, Wang C L. Elliptic functions, Green functions and the mean field equations on tori. Ann of Math (2), 2010, 172: 911–954

    Article  MathSciNet  Google Scholar 

  15. Lin C S, Wang C L. Geometric quantities arising from bubbling analysis of mean field equations. ArXiv:1609.07204v1, 2016

    Google Scholar 

  16. Lisovyy O, Tykhyy Y. Algebraic solutions of the sixth Painlevé equation. J Geom Phys, 2014, 85: 124–163

    Article  MathSciNet  Google Scholar 

  17. Manin Y. Sixth Painlevé quation, universal elliptic curve, and mirror of P2. Amer Math Soc Transl Ser 2, 1998, 186: 131–151

    MATH  Google Scholar 

  18. Mazzocco M. Picard and Chazy solutions to the Painlevé VI equation. Math Ann, 2001, 321: 157–195

    Article  MathSciNet  Google Scholar 

  19. Okamoto K. Studies on the Painlevé equations. I. Sixth Painlevé equation P VI. Ann Mat Pura Appl (4), 1986, 146: 337–381

    Article  Google Scholar 

  20. Painlevé P. Sur les équations différentialles du second ordre à points critiques fixes. C R Acad Sci Paris Sér I, 1906, 143: 1111–1117

    MATH  Google Scholar 

  21. Takemura K. The Hermite-Krichever Ansatz for Fuchsian equations with applications to the sixth Painlevé equation and to finite gap potentials. Math Z, 2009, 263: 149–194

    Article  MathSciNet  Google Scholar 

  22. Watanabe H. Birational canonical transformations and classical solutions of the sixth Painlevé equation. Ann Sc Norm Super Pisa Cl Sci (5), 1998, 27: 379–425

    MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11701312). The authors thank Chin-Lung Wang very much for providing the file of Figure 1 to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Shou Lin.

Additional information

Dedicated to Professor Lo Yang on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Kuo, TJ. & Lin, CS. Simple zero property of some holomorphic functions on the moduli space of tori. Sci. China Math. 62, 2089–2102 (2019). https://doi.org/10.1007/s11425-018-9355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9355-0

Keywords

MSC(2010)

Navigation