Skip to main content
Log in

A mathematical aspect of Hohenberg-Kohn theorem

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The Hohenberg-Kohn theorem plays a fundamental role in density functional theory, which has become the most popular and powerful computational approach to study the electronic structure of matter. In this article, we study the Hohenberg-Kohn theorem for a class of external potentials based on a unique continuation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R A, Fournier J J F. Sobolev Spaces, 2nd ed. Amsterdam: Academic Press, 2003

    MATH  Google Scholar 

  2. Ayers P W, Golden S, Levy M. Generalizations of the Hohenberg-Kohn theorem, I: Legendre transform constructions of variational principles for density matrices and electron distrbution functions. J Chem Phys, 2006, 124: 054101

    Article  Google Scholar 

  3. Boosting materials modelling. Nature Materials, 2016, 15: 365, http://www.nature.com/nmat/journal/v15/n4/pdf/ nmat4619.pdf

    Article  Google Scholar 

  4. Eschrig H. The Fundamentals of Density Functional Theory. Leipzig: Eagle, 2003

    MATH  Google Scholar 

  5. Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, et al. Positivity of the spherically averaged atomic oneelectron density. Math Z, 2008, 259: 123–130

    Article  MathSciNet  MATH  Google Scholar 

  6. Hadjisavvas N, Theophilou A. Rigorous formulation of the Kohn-Sham theory. Phys Rev A (3), 1984, 30: 2183–2186

    Article  MathSciNet  Google Scholar 

  7. Hohenberg P, Kohn W. The inhomogeneous electron gas. Phys Rev, 1964, 136: 864–871

    Article  MathSciNet  Google Scholar 

  8. Jerison D, Kenig C E. Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann of Math (2), 1985, 121: 463–494

    Article  MathSciNet  MATH  Google Scholar 

  9. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev A, 1965, 140: 4743–4754

    Article  MathSciNet  Google Scholar 

  10. Kryachko E S. On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems. Int J Quantum Chem, 2005, 103: 818–823

    Article  Google Scholar 

  11. Kryachko E S. On the proof by reductio ad absurdum of the Hohenberg-Kohn theorem for ensembles of fractionally occupied states of Coulomb systems. Int J Quantum Chem, 2006, 106: 1795–1798

    Article  Google Scholar 

  12. Kryachko E S, Ludeñ E V. Density functional theory: Foundations reviewed. Phys Rep, 2014, 544: 123–239

    Article  MathSciNet  Google Scholar 

  13. Kvaal S, Helgaker T. Ground-state densities from the Rayleigh-Ritz variation principle and from density functional theory. J Chem Phys, 2015, 143: 184106

    Article  Google Scholar 

  14. Lammert P E. Differentiability of Lieb functional in electronic density functional theory. Int J Quantum Chem, 2007, 107: 1943–1953

    Article  Google Scholar 

  15. Levy M. University variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solutions of the v-representability problems. Proc Natl Acad Sci USA, 1979, 76: 6062–6065

    Article  Google Scholar 

  16. Levy M. Electron densities in search of Hamiltonians. Phys Rev A, 1982, 26: 1200–1208

    Google Scholar 

  17. Lieb E H. Density functionals for Coulomb systems. Int J Quantum Chem, 1983, 24: 243–277

    Article  Google Scholar 

  18. Martin R. Electronic Structure: Basic Theory and Practical Methods. London: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  19. Parr R G, Yang W T. Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989

    Google Scholar 

  20. Pino R, Bokanowski O, Ludexxxxxa E V, et al. A re-statement of the Hohenberg-Kohn theorem and its extension to finite subspaces. Theor Chem Account, 2007, 118: 557–561

    Article  Google Scholar 

  21. Reed M, Simon B. Methods of Modern Mathematical Physics IV: Analysis of Operators. San Diego: Academic Press, 1978

    MATH  Google Scholar 

  22. Redner S. Citation statistics from 110 years of physical review. Physics Today, 2005, 58: 49–54

    Article  Google Scholar 

  23. Schechter M, Simon B. Unique continuation for Schrodinger operators with unbounded potentials. J Math Anal Appl, 1980, 77: 482–492

    Article  MathSciNet  MATH  Google Scholar 

  24. Szczepanik W, Dulak M, Wesolowski T A. Comment on "On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems". Int J Quantum Chem, 2007, 107: 762–763

    Article  Google Scholar 

  25. van Noorden R, Maher B, Nuzzo R. The top 100 papers. Nature, 2014, 514: 550–553

    Article  Google Scholar 

  26. Wolff T H. Recent work on sharp estimates in second-order elliptic unique continuation problems. J Geom Anal, 1993, 3: 621–650

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou A. Hohenberg-Kohn theorem for Coulomb type systems and its generalization. J Math Chem, 2012, 50: 2746–2754

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou A. Some open mathematical problems in electronic structure models and calculations (in Chinese). Sci Sin Math, 2015, 45: 929–938

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 91730302, 9133202 and 11671389), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS010). The author thanks Mr. Bing Yang for the useful discussion on the unique continuation property and the anonymous referees for their careful reviews and helpful suggestions that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A. A mathematical aspect of Hohenberg-Kohn theorem. Sci. China Math. 62, 63–68 (2019). https://doi.org/10.1007/s11425-018-9337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9337-2

Keywords

MSC(2010)

Navigation