Skip to main content
Log in

Isometries for the modulus metric in higher dimensions are conformal mappings

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

for a proper subdomain D of \({{\overline {\mathbb{R}}} ^n}\) and for all x,yD define

$${\mu _D}\left({x,\,y} \right) = \mathop {\inf}\limits_{{C_{xy}}} \,\,{\rm{Cap}}\left({D,\,{C_{xy}}} \right),$$

where the infimum is taken over all curves Cxy = γ[0, 1] in D with γ(0) = x and γ(1) = y, and Cap denotes the conformal capacity of condensers. The quantity μD is a metric if and only if the domain D has a boundary of positive conformal capacity. If Cap(∂D) > 0, we call μD the modulus metric of D. Ferrand et al. (1991) have conjectured that isometries for the modulus metric are conformal mappings. Very recently, this conjecture has been proved for n = 2 by Betsakos and Pouliasis (2019). In this paper, we prove that the conjecture is also true in higher dimensions n ⩾ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997

    MATH  Google Scholar 

  2. Betsakos D. Geometric versions of Schwarz’s lemma for quasiregular mappings. Proc Amer Math Soc, 2011, 139: 1397–1407

    Article  MathSciNet  Google Scholar 

  3. Betsakos D, Pouliasis S. Isometries for the modulus metric are quasiconformal mappings. Trans Amer Math Soc, 2019, 372: 2735–2752

    Article  MathSciNet  Google Scholar 

  4. Cheng T, Yang S. Extremal function for capacity and estimates of QED constants in ℝn. Adv Math, 2017, 306: 929–957

    Article  MathSciNet  Google Scholar 

  5. Dubinin V N. Condenser Capacities and Symmetrization in Geometric Function Theory. Basel: Birkhäuser, 2014

    Book  Google Scholar 

  6. Ferrand J. Conformal capacities and conformally invariant functions on Riemannian manifolds. Geom Dedicata, 1996, 61: 103–120

    Article  MathSciNet  Google Scholar 

  7. Ferrand J. Conformal capacities and extremal metrics. Pacific J Math, 1997, 180: 41–49

    Article  MathSciNet  Google Scholar 

  8. Ferrand J, Martin G J, Vuorinen M. Lipschitz conditions in conformally invariant metrics. J Anal Math, 1991, 56: 187–210

    Article  MathSciNet  Google Scholar 

  9. Gál I S. Conformally invariant metrics and uniform structures. I. II. Indag Math (NS), 1960, 63: 218–231, 232–244

    Article  MathSciNet  Google Scholar 

  10. Garnett J B, Marshall D E. Harmonic Measure. New Mathematical Monographs, vol. 2. Cambridge: Cambridge University Press, 2008

    Google Scholar 

  11. Gehring F W. Extremal length definitions for the conformal capacity of rings in space. Michigan Math J, 1962, 9: 137–150

    Article  MathSciNet  Google Scholar 

  12. Gehring F W. Rings and quasiconformal mappings in space. Trans Amer Math Soc, 1962, 103: 353–393

    Article  MathSciNet  Google Scholar 

  13. Gehring F W, Martin G J, Palka B P. An Introduction to the Theory of Higher Dimensional Quasiconformal Mappings. Mathematical Surveys and Monographs, vol. 216. Providence: Amer Math Soc, 2017

    Book  Google Scholar 

  14. Hästö P. Isometries of the quasihyperbolic metric. Pacific J Math, 2007, 230: 315–326

    Article  MathSciNet  Google Scholar 

  15. Hästö P. Isometries of relative metrics. In: Quasiconformal Mappings and Their Applications. New Delhi: Narosa, 2007, 57–77

    Google Scholar 

  16. Hästö P, Ibragimov Z. Apollonian isometries of planar domains are Möbius mappings. J Geom Anal, 2005, 15: 229–237

    Article  MathSciNet  Google Scholar 

  17. Hästö P, Ibragimov Z. Apollonian isometries of regular domains are Möbius mappings. Ann Acad Sci Fenn Math, 2007, 32: 83–98

    MathSciNet  MATH  Google Scholar 

  18. Hästö P, Ibragimov Z, Lindén H. Isometries of relative metrics. Comput Methods Funct Theory, 2006, 6: 15–28

    Article  MathSciNet  Google Scholar 

  19. Hästö P, Lindén H. Isometries of the half-apollonian metric. Complex Var Theory Appl, 2004, 49: 405–415

    MathSciNet  MATH  Google Scholar 

  20. Heinonen J, Kilpeläinen T, Martio O. Nonlinear Potential Theory of Degenerate Elliptic Equations. New York: Dover Publications, 2006

    MATH  Google Scholar 

  21. Herron D, Ibragimov Z, Minda D. Geodesics and curvature of Moäbius invariant metrics. Rocky Mountain J Math, 2008, 38: 891–921

    Article  MathSciNet  Google Scholar 

  22. Kilpeläainen T. Potential theory for supersolutions of degenerated elliptic equations. Indiana Univ Math J, 1989, 38: 253–275

    Article  MathSciNet  Google Scholar 

  23. Klén R, Vuorinen M, Zhang X. On isometries of conformally invariant metrics. J Geom Anal, 2016, 26: 914–923

    Article  MathSciNet  Google Scholar 

  24. Lelong-Ferrand J. Invariants conformes globaux sur les varietés riemanniennes. J Differential Geom, 1973, 8: 487–510

    Article  MathSciNet  Google Scholar 

  25. Loewner C. On the conformal capacity in the space. J Math Mech, 1959, 8: 411–414

    MathSciNet  MATH  Google Scholar 

  26. Maz’ya V G, Khavin V P. Non-linear potential theory. Russian Math Surveys, 1972, 27: 71–148

    Article  Google Scholar 

  27. Mohri M. Quasiconformal metric and its application to quasiregular mappings. Osaka J Math, 1984, 21: 225–237

    MathSciNet  MATH  Google Scholar 

  28. Ransford T. Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge: Cambridge University Press, 1995

    Book  Google Scholar 

  29. Vuorinen M. Conformal invariants and quasiregular mappings. J Anal Math, 1985, 45: 69–115

    Article  MathSciNet  Google Scholar 

  30. Vuorinen M. Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319. Berlin: Springer-Verlag, 1988

    Book  Google Scholar 

  31. Wang G, Vuorinen M. The visual angle metric and quasiregular maps. Proc Amer Math Soc, 2016, 144: 4899–4912

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11771400 and 11911530457) and Science Foundation of Zhejiang Sci-Tech University (Grant No. 16062023Y). This work was completed during the author’s visit to the University of Turku. The author wishes to express his thanks to Professor Matti Vuorinen for his kind help, and to University of Turku for the hospitality. The author is indebted to the anonymous referees for the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Isometries for the modulus metric in higher dimensions are conformal mappings. Sci. China Math. 64, 1951–1958 (2021). https://doi.org/10.1007/s11425-018-1670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-1670-6

Keywords

MSC(2010)

Navigation