Skip to main content
Log in

Analysis of a time-dependent fluid-solid interaction problem above a local rough surface

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the mathematical analysis of a time-dependent fluid-solid interaction problem associated with a bounded elastic body immersed in a homogeneous air or fluid above a local rough surface. We reformulate the unbounded scattering problem into an equivalent initial-boundary value problem defined in a bounded domain by proposing a transparent boundary condition (TBC) on a hemisphere. Analyzing the reduced problem with the Lax-Milgram lemma and the abstract inversion theorem of the Laplace transform, we prove the well-posedness and stability for the reduced problem. Moreover, an a priori estimate is established directly in the time domain for the acoustic wave and elastic displacement by using the energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amini S, Harris P. Boundary element and finite element methods for the coupled fluid-structure interaction problem. In: Boundary Elements X, vol. 1. New York: Springer-Verlag, 1988, 509–533

    Google Scholar 

  2. Bao G, Gao Y, Li P. Time-domain analysis of an acoustic-elastic interaction problem. Arch Ration Mech Anal, 2018, 229: 835–884

    Article  MathSciNet  Google Scholar 

  3. Chen Q, Monk P. Discretization of the time domain CFIE for acoustic scattering problems using convolution quadra-ture. SIAM J Math Anal, 2014, 46: 3107–3130

    Article  MathSciNet  Google Scholar 

  4. Chen Z. Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int J Numer Anal Model, 2009, 6: 124–146

    MathSciNet  MATH  Google Scholar 

  5. Chen Z, Nédélec J. On Maxwell equations with the transparent boundary condition. J Comput Math, 2008, 26: 284–296

    MathSciNet  MATH  Google Scholar 

  6. Donea J, Giuliani S, Halleux J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Math, 1982, 33: 689–723

    MATH  Google Scholar 

  7. Elschner J, Hu G. Variational approach to scattering of plane elastic waves by diffraction gratings. Math Models Methods Appl Sci, 2010, 33: 1924–1941

    MathSciNet  MATH  Google Scholar 

  8. Estorff O, Antes H. On FEM-BEM coupling for fluid-structure interaction analyses in the time domain. Internat J Numer Methods Engrg, 1991, 31: 1151–1168

    Article  Google Scholar 

  9. Everstine G, Henderson F. Coupled finite element/boundary element approach for fluid–structure interaction. J Acoust Soc Amer, 1990, 87: 1938–1947

    Article  Google Scholar 

  10. Flemisch B, Kaltenbacher M, Wohlmuth B. Elasto-acoustic and acoustic-acoustic coupling on non-matching grids. Internat J Numer Methods Engrg, 2006, 67: 1791–1810

    Article  MathSciNet  Google Scholar 

  11. Gao Y, Li P. Analysis of time-domain scattering by periodic structures. J Differential Equations, 2016, 261: 5094–5118

    Article  MathSciNet  Google Scholar 

  12. Gao Y, Li P. Electromagnetic scattering for time-domain Maxwell’s equations in an unbounded structure. Math Models Methods Appl Sci, 2017, 27: 1843–1870

    Article  MathSciNet  Google Scholar 

  13. Gao Y, Li P, Zhang B. Analysis of transient acoustic-elastic interaction in an unbounded structure. SIAM J Math Anal, 2017, 49: 3951–3972

    Article  MathSciNet  Google Scholar 

  14. Hamdi M, Jean P. A mixed functional for the numerical resolution of fluid-structure interaction problems. In: Aero-and Hydro-Acoustics. IUTAM (International Union of Theoretical and Applied Mechanics) Symposia. Berlin-Heidelberg: Springer, 1986, 269–276

    Book  Google Scholar 

  15. Hsiao G. On the boundary-field equation methods for fluid-structure interactions. In: Problems and Methods in Mathematical Physics. TEUBNER-TEXTE zur Mathematik. Wiesbaden: Vieweg+Teubner Verlag, 1994, 79–88

    Book  Google Scholar 

  16. Hsiao G, Kleinman R, Roach G. Weak solutions of fluid-solid interaction problems. Math Nachr, 2000, 218: 139–163

    Article  MathSciNet  Google Scholar 

  17. Hsiao G, Kleinman R, Schuetz L. On variational formulations of boundary value problems for fluid-solid interactions. North-Holland Ser Appl Math Mech, 1989, 35: 321–326

    Article  MathSciNet  Google Scholar 

  18. Hsiao G, Sayas F, Weinacht R. Time-dependent fluid-structure interaction. Math Methods Appl Sci, 2015, 8: 343–350

    MATH  Google Scholar 

  19. Hu G, Kirsch A, Yin T. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Probl Imaging, 2016, 10: 103–129

    Article  MathSciNet  Google Scholar 

  20. Hu G, Rathsfeld A, Yin T. Finite element method to fluid-solid interaction problems with unbounded periodic inter-faces. Numer Methods Partial Differential Equations, 2016, 32: 5–35

    Article  MathSciNet  Google Scholar 

  21. Jiao D, Ergin A, Shanker B, et al. A fast time-domain higher-order finite element-boundary integral method for three-dimensional electromagnetic scattering analysis. IEEE Trans Antennas and Propagation, 2002, 50: 1192–1202

    Article  MathSciNet  Google Scholar 

  22. Li J, Huang Y. Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. New York: Springer, 2012

    MATH  Google Scholar 

  23. Li P, Wang L, Wood A. Analysis of transient electromagnetic scattering from a three-dimensional open cavity. SIAM J Appl Math, 2015, 75: 1675–1699

    Article  MathSciNet  Google Scholar 

  24. Li P, Wu H, Zheng W. An overfilled cavity problem for Maxwell’s equations. Math Methods Appl Sci, 2012, 35: 1951–1979

    Article  MathSciNet  Google Scholar 

  25. Luke C, Martin P. Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle. SIAM J Appl Math, 1995, 55: 904–922

    Article  MathSciNet  Google Scholar 

  26. Morand H, Ohayon R. Fluid Structure Interaction. Chichester: John Wiley, 1995

    MATH  Google Scholar 

  27. Soares D, Mansur W. Dynamic analysis of fluid-soil-structure interaction problems by the boundary element method. J Comput Phys, 2006, 219: 498–512

    Article  Google Scholar 

  28. Treves F. Basic linear partial differential equations. Ann of Math (2), 1975, 47: 202–212

    MATH  Google Scholar 

  29. Wang B, Wang L. On L2-stability analysis of time-domain acoustic scattering problems with exact nonre ecting boundary conditions. J Math Study, 2014, 1: 65–84

    Article  Google Scholar 

  30. Wang L, Wang B, Zhao X. Fast and accurate computation of time-domain acoustic scattering problems with exact nonre ecting boundary conditions. SIAM J Appl Math, 2012, 72: 1869–1898

    Article  MathSciNet  Google Scholar 

  31. Yin T, Hu G, Xu L, et al. Near-field imaging of obstacles with the factorization method: Fluid-solid interaction. Inverse Problems, 2016, 32: 015003

    Article  MathSciNet  Google Scholar 

  32. Zhao X, Wang L. Effcient spectral-Galerkin method for waveguide problem in infinite domain. Commun Appl Math Comput, 2013, 27: 87–100

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11771349), the Fundamental Research Funds for the Central Universities (Grant No. 1191329813), the China Postdoctoral Science Foundation (Grant Nos. 2015M580827 and 2016T90900) and Postdoctoral Research Project of Shaanxi Province of China (Grant No. 2016BSHYDZZ52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Yang, J. Analysis of a time-dependent fluid-solid interaction problem above a local rough surface. Sci. China Math. 63, 887–906 (2020). https://doi.org/10.1007/s11425-017-9364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9364-3

Keywords

MSC(2010)

Navigation